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Questions 

• 17. How can neuronal populations perform Bayesian 
inference?  

• 18. How can neuronal populations perform Bayesian 
learning?  

 

• 19. What is the neuronal evidence for representations of 
uncertainty? 

• 20. What is the neuronal evidence for Bayesian inference 
and learning?  

 



Why do we care? 

• If neuron(s) can encode probabilities 

• Neural computation ≈ Probabilistic inference 

• Human performance sometimes close to Bayes-optimal 

• Perception / motor control 

• Multisensory integration 

 

• Therefore neuron(s) may code both stimulus value and 
its uncertainty (i.e., probability) 

 
How ? 



Neuronal properties 

 

Integrate-and fire neurons: multiple dendrites 

and one cell body (soma) receive and integrate 

synaptic inputs as membrane potentials which 

are compared to a threshold at the axon 

initiation segment. If threshold is met, axonal 

spikes/firings are triggered along a single axon 

which branches distally to convey outputs. 
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Mapping neuronal properties 

 Neural activity space:  



Mapping neuronal properties 

 Neural activity space:  Probability space:  



Mapping neuronal properties 

Neural activity space:  Probability space:  

(Ma et al. 2008) 



Mapping neuronal properties 

 Integrate – Fire Neuron Bayes Theorem  

Summation Multiplication 

? 



Mapping neuronal properties 

 Integrate – Fire Neuron Bayes Theorem  

Need population code for probability distribution    



Assumption of neuronal variability 

• The spike trains of an individual sensory neuron are 

from a Poisson process 

 

50 Hz 

40 Hz 

Mean firing 
rate = r 



Stimulus-selective firing  
(tuning) 

• Sensory neurons have selective activities to preferred 
stimulus features (direction/orientation/frequency …) 

MT neuron in Macaque 

Observed 
firing rate 

Tuning 
function 

Stimulus 
feature 



Rate coding from population 

• Mean firing rate can be reliably encoded in a group of 
homogenous neurons (central limit theorem) 

 

Spike count in 50 ms (averaged by population size) 

r=50 Hz ~ 
2.5 spike per 50 ms 



• Neural activity space (i.e., physical space) 

• Given stimulus feature  

• N independent Poisson neurons 

• with observed firing rate 

• from turning function 

Population with turning curves 

70° 



Population with turning curves 

• (Moving to probability space) 

• For neuron i, the probability of observing ri  (given s) 
follows a Poisson distribution with mean (and var) fi(s). 

 

 

• Then the probability of observing r (given s) is: 

 

 



Bayes from neural population 

Neural 
space 

Probability 
space 

 



Further assumption 

• If neurons have bell shape tuning function: 

 

S 

f(s) g 

• Therefore, the population activity r automatically 
(implicitly) encode posterior distribution, assuming the 
Bayes rule and a certain form of neuronal variability. 

 



Bayes from neural population 

 Bayes Theorem  

Assumption: 
Independent Poisson 
  

Probability 
space 

Neural 
space 

Population of Neurons 



Bayes from neural population 

• So Bayes inference can be implemented in neurons:  

Given s 

Neural 
space 

Probability 
space 



(Un)certainty 

• The (un) certainty is encoded by g,  
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All under the assumptions: 

• Neuronal variability 

• independent Poisson processes 

• Tuning function 

• Identically shaped (not necessarily) 

• Gaussian tuning function gives Gaussian posterior 

• Those assumptions can take a weaker form 

 



The more general form 

• Passion variability and identical Gaussian tuning are the 
special forms of:  

 



Summary 

• So Bayes inference can be implemented in neurons:  

 



Questions 

17. How can neuronal populations perform Bayesian inference?  

 

18. How can neuronal populations perform Bayesian learning?  

 

 

 

19. What is the neuronal evidence for representations of uncertainty? 

 

20. What is the neuronal evidence for Bayesian inference and learning?  

Can we get similar results with realistic networks (integrate and fire neurons)? 



Cue integration 

• Optimal cue integration is the linear sum in neural space 

(Ma et al. 2008) 



Integrate and fire neurons 
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Cue 1 Cue 2 

Output layer:  
•1200 conductance-based integrate-
and-fire neurons, 1000 excitatory, 200 
inhibitory 
•Lateral connections 
•Fano factors (0.3 to 1) 
•Correlated activity  

Input: near-Poisson correlated spike 
trains with different gains and slightly 
different means 



Test cue 1 alone 
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Test cue 2 alone 
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Test cue1 and cue2 together 
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Compare the distributions 
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How does p(r3|s) compare to 
p(r1|s)p(r2|s)? 
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Compare the distributions 
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Example: Decision-making 

Accumulating Evidence over time 

1. Sensory evidence is accumulated over time 

2. Accumulation is stopped at some point 

3. Action must be selected 

 

 



Example: Decision-making 

(Beck et al, 2008)  

Continuous decision making: any direction 

 

Motion direction task (extensively used in prior studies): 

Presentation of random dots, a fraction is moving coherently in one direction 

Report direction of movement with a saccadic eye movement to a choice target 

 

 

 
Binary decision making: left or right 

 

Task: 
Model: 

Middle Temporal (MT) 

Input layer 

 

Lateral IntraParietal (LIP) 

Evidence Accumulation 

Layer 

 

Superior Culliculus(SCb) 

Output, decision Layer  

 



Example: Decision-making 

(Beck et al, 2008)  

Motion direction task (extensively used in prior studies): 

Presentation of random dots, a fraction is moving coherently in one direction 

Report direction of movement with a saccadic eye movement to a choice target 

 

 

 

Tuning curves for direction of motion 

 

Tuning curves for saccade direction 

long time constant (1s), allow to 

integrate inputs  

Tuning curves for saccade direction 

attractor network  

 

Model: 



Example: Decision-making 

(Beck et al, 2008)  

Motion direction task: coherence is reliability of the motion information 

 

 
Model output:               Empirical evidence  

Firing rate over time for two units tuned to 180 (solid line) and 0 (dotted line) for six 

different levels of coherence.  

 



But what about the prior P(s) 

• Local prior  ? 

• Prediction: baseline activity in cortex (e.g. before the start 
of a trial) should encode the prior distribution  

 

(Glimcher and Platt, 1999)  



But where does P(s) come from? 

• biologically plausible framework of acquiring Priors  

• Optimized (learnt) online in hierarchical generative models 
(under free-energy principal) 
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(Friston, 2010)  



Bayesian learning 

• So far p(r|s) is a function only of the stimulus s 

• Very often the brain needs to infer the latent causes  

 

Beck et al. (2012) NIPS 



Bayesian learning 

• Latent cause 

• Observed sensory data 

• Parameter Θ 

 

 

• Optimization problem: find maximum likelihood 
parameters Θ 



Expectation-Maximization algorithm 

• The lower bound of logP(r|Θ) is the free energy 

 

 

• Q variational distribution 

• E-M iteratively optimize F 

• E-step (inference): compute the variational posterior Q at 
current Θ 

• M-step (learning): update Θ based on current Q 

• Repeat until converge 

 

Beck et al. (2012) NIPS 



Online learning using EM 

 



Thank you 



Example: Decision-making 

Accumulating Evidence over time 

(Beck et al, 2008)  


