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Cognition and

Qu eStionS MRC Brain Sciences Unit

e 17. How can neuronal populations perform Bayesian
inference?

e 18. How can neuronal populations perform Bayesian
learning?

e 19. What is the neuronal evidence for representations of
uncertainty?

e 20. What is the neuronal evidence for Bayesian inference
and learning?
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Why do We Ca re? MRC Br:in Sciences Unit

e |f neuron(s) can encode probabilities

e Neural computation = Probabilistic inference

e Human performance sometimes close to Bayes-optimal
e Perception / motor control
e Multisensory integration

e Therefore neuron(s) may code both stimulus value and
its uncertainty (i.e., probability)

How ?
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Neurons: Integrate Fire Spike rate
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Integrate-and fire neurons: multiple dendrites Firing rate distribution

and one cell body (soma) receive and integrate
synaptic inputs as membrane potentials which
are compared to a threshold at the axon
initiation segment. If threshold is met, axonal
spikes/firings are triggered along a single axon =
which branches distally to convey outputs. Flring rate (Hz)
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can be fitted by (lognormal) distribution
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Cognition and

Mapping neuronal properties LRSS EREEREmT

Neural activity space:

Stimuli s

l encoding

»

;' ‘. |Imput population activities r
3 Neural 0 i
4 perations

A '

Output population activity

Neural activity space l

Motor action/judgment
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Cognition and

Mapping neuronal properties LRSS EREEREmT

Neural activity space: Probability space:

Stimuli s

l encoding

FS
.-' % Input population activities r Probability distributions p(s]r) ‘ ’\
t Neural operations Probabilistic computations :
AR ' ' 2ol
Output population activity Output probability distribution

Neural activity space l

Motor action/judgment
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Cognition and

Mapping neuronal properties LRSS EREEREmT

Neural activity space: Probability space:
Stimuli s Assuming a form of neural variability
*
l encoding J 3

Neural operations Probabilistic computations

- ' Bayes | ' b

Output population activity Output probability distribution

Bayes
»
.-' "& Input population activities r Probability distributions p(s]r) ‘ ’\

x

Neural activity space l s Probability space

Assuming a form of neural variability

Motor action/judgment

Current Opinion in Neurobiology
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. . Cognition and
Mapping neuronal properties

Integrate — Fire Neuron Bayes Theorem
—= _—4 . P(s|r) o< P(r|s)P(s)
\AIS |
=0
- N\
1 Ll
Summation Neural operations ] Probabilistic computations ] Multiplication

MRC | Medical Research Council



Cognition and

Mapping neuronal properties LRSS EREEREmT

Integrate — Fire Neuron

——

\AIS

Bayes Theorem

P(s|r) o< P(r|s)P(s)

> 2 Need population code for probability distribution
- N\

Input population activities r

Neural operations
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Probability distributions p(sr)

Probabilistic computations




Assumption of neuronal variability

» The spike trains of an individual sensory neuron are
from a Poisson process

P[n spikes during At] =
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Stimulus-selective firing
(tuning)

Cognition and
MRC Brain Sciences Unit

e Sensory neurons have selective activities to preferred
stimulus features (direction/orientation/frequency ...)

Observed Tuning
firing rate function
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MT neuron in Macaque )
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Rate coding from population QUSSR

e Mean firing rate can be reliably encoded in a group of
homogenous neurons (central limit theorem)

3r 3

r=50 Hz ~
2.5 spike per 50 ms

Density

m=10

1 | M

O o 0 il j

1 2 3 4 15 2 2.5 3 3.5
Mean spike count

Spike count in 50 ms (averaged by population size)
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. . . Cognition and
Population with turning curves

» Neural activity space (i.e., physical space)

e Given stimulus feature S
N independent Poisson neurons |1,2,3, ..., V]
e with observed firing rate r=[ry,7r2,.., "N
e from turning function F(s) = |fi(s), fa(s), ..., fn(s)]
= A
=5
z
>
=

50° 80°
Stimulus Feature Space
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. . . Cognition and
Population with turning curves

» (Moving to probability space)

e For neuron i, the probability of observing r; (given s)
follows a Poisson distribution with mean (and var) f.(s).

e HOf(5)"

Ti!

P(rils) =

e Then the probability of observing r (given S) is:

e—fi(s) (s)"
Pirls) = ] Pils)= ]] Jils)

| | ?”z‘!
i=1.2.3.....N i=1.2.3....N
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Bayes from neural population

e~ i(s) . s\
P(s|r) o< P(r|s)P(s) H " ils)
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Further assumption
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e |f neurons have bell shape tuning function:

P(s|r) = Norm(s

1

Ck (

)

e(Hz)

f(s)g

Irin

F

A

A

50°  80°
Stimulus Feature Space S

e Therefore, the population activity r automatically
(implicitly) encode posterior distribution, assuming the
Bayes rule and a certain form of neuronal variability.
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. Cognition and
Bayes from neural population LSS

Population of Neurons Bayes Theorem

3 = Probability P(S|I‘) X P(r|S)P(8)

space

Assumption:
Independent Poisson

Input population activities r I s [Probability distributions p(slr)l
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. Cognition and
Bayes from neural population

e So Bayes inference can be implemented in neurons:

p(sir)e p(rls)p(s)

B A

posterior likelihood prior
. ivi Probability
Given s Activity
. I p(slr)
\ ) ¢ ° Bayes’ rule
Y. ® ®
[ ) L
® 9 o
Neural Preferred stimulus PrObab”ity imulus

space
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(Un)ce rtalnty MRC Br;Jin Sciences Unit

e The (un) certainty is encoded by g, g X 1/02
10Q OQ g
by — 0.04
2 Bayesian “ High gain,
3 decoder o 0.0z o high certainty
0= -45 0 ‘ 45 0 -45 0 45
Preferred stimulus stimulus
100
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< decoder a :
o L L

- ) -45 0 45
Preferred stimulus stimulus
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All under the assumptions: MRC | srain sciences uni

e Neuronal variability
e independent Poisson processes
e Tuning function
e |dentically shaped (not necessarily)
e Gaussian tuning function gives Gaussian posterior

e Those assumptions can take a weaker form
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The more general form MRC Br;Jin Sciences Unit

e Passion variability and identical Gaussian tuning are the
special forms of:

P(r[s) = ¢(r)e™ )™

dh(s — df (s
i = L ()5
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S u m m a ry M RC gfji:it‘;?:?eiggs Unit

e So Bayes inference can be implemented in neurons:

Stimuli s Assuming a form of neural variability
.0
*
l encoding J 3

» Bayes
..'.’ Input population activities r Probability distributions p(s{r) ‘ ’\

Neural operations Probabilistic computations

0 ' ‘Bayes L ' A X

Output population activity [Output probability distribution

x

*
*

Neural activity space l % Probability space
Assuming a form of neural variability

Motor action/judgment

Current Opinion in Neurobiology
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QueStionS MRC Cognition and

Brain Sciences Unit

17. neuronal populations perform Bayesian inference?

18. How can neuronal populations perform Bayesian learning?

19. What is the for representations of uncertainty?

20. What is the neuronal evidence for Bayesian inference and learning?

Can we get similar results with realistic networks (integrate and fire neurons)?
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Cue integration MRC Brain Sciences Unit

e Optimal cue integration is the linear sum in neural space

/
p(s|rs)
p(siry)
Cue 1 - =
) 20 ; 0 100 =
s 1 a0 S p(s|rs) xp(s|r) p(s|ra)
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Current Opinion in Neurobiology
L [

Neural operations ] > [ Probabilistic computations ] (Ma et al. 2008)
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Integrate and fire neurons MRC | rain sciences unit

Activity

Output layer:
¢1200 conductance-based integrate-

100, OQ
3 I s and-fire neurons, 1000 excitatory, 200
S PR inhibitory
EX: oot eLateral connections
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TeSt Cue 1 alone MRC Brain Sciences Unit

Activity

10Q ;
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Test cue 2 alone

Bayesian
decoder p(r,|s)

Activity

S 45 0 7
Preferred S

(OX®) QOO

(OYeY®) QOO

Activity

Preferred S
Cue 2
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Test cuel and cue2 together

MRC
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Activity
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Compare the distributions

Activity

Activity

| 45Prefe9re How does p(rs|S) compare to
p(ry|s)p(r,ls)?
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Compare the distributions MRC | srain sciences unit

] plr3 ) versus p(r, |s)p(r, s)
Cuel 3 .
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Identical tuning curves
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Compare the distributions

MRC
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Brain Sciences Unit

Cuel

Cue 2

Activity

Activity
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p(ry|s) versus p(r,|s)p(r,|s)
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Different tuning curves and different correlations
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Example: Decision-making

Accumulating Evidence over time

1. Sensory evidence is accumulated over time
2. Accumulation is stopped at some point
3. Action must be selected
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Example: Decision-making

MRC
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Motion direction task (extensively used in prior studies):
Presentation of random dots, a fraction is moving coherently in one direction
Report direction of movement with a saccadic eye movement to a choice target

Task:
Binary decision making: left or right

Cele# ' 8

® -y L A
. Fi e
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Model:
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(Beck et al, 2008)



Example: Decision-making

Cognition and
MRC Brain Sciences Unit

Motion direction task (extensively used in prior studies):
Presentation of random dots, a fraction is moving coherently in one direction
Report direction of movement with a saccadic eye movement to a choice target

Tuning curves for saccade direction
attractor network

Tuning curves for saccade direction

long time constant (1s), allow to
Integrate inputs

Tuning curves for direction of motion

MRC | Medical Research Council
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Example: Decision-making
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Motion direction task: coherence is reliability of the motion information

Model output:

w
=

Mcan Firing rate (Hz)

w
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Firing rate over time for two units tuned to 180 (solid line) and O (dotted line) for six

different levels of coherence.
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But what about the prior P(s) LU Bt

Brain Sciences Unit

e Local prior ?

e Prediction: baseline activity in cortex (e.g. before the start
of a trial) should encode the prior distribution

200 - ;.':;:;.';'. T Ny
o 4, Y b Early Late Early Late Pre- Post-

N 1504 S visual visual cue cue  movement movement
T R ‘CH990322 < 200 '
2 T 150 ! ){(
€ 100- P ¢
2 © 100 . 4
i 2 =0 /rg:*"/ e

291 i okln=329 CH990322

00 05 10

Expected gain ratio

T T R T Th LI} T
-500 Target onset 500 1,000 1,500 ms

(Glimcher and Platt, 1999)
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But where does P(s) come from?

e biologically plausible framework of acquiring Priors

e Optimized (learnt) online in hierarchical generative models
(under free-energy principal)

Forward prediction

Backward predictions

MRC \ Medical Research Council (Fr|St0n’ 2010)
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e So far p(r|s) is a function only of the stimulus s
e Very often the brain needs to infer the latent causes

A

¢ 2 ‘

As = 3 Response
: s@g to Mixture
- of Odors
& |
= =

Single

Odor

Response

>

Olfactory Receptor Neurons

L = lgm o RREEE

Cause Intensity Olfactory Receptor Neurons

[¥S]

Olfactory Receptor Neurons

Beck et al. (2012) NIPS
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e Latent cause C = [Cl,, €9, ..., CH} g‘ﬂ
e Observed sensory data r — [Tl,, r9, ...,,?“H] é}

e Parameter ®

P(r|©) = ZP rilci; ©)P(ci|O) ‘ I I

Cause Intensity

e Optimization problem. find maximum likelihood
parameters ©

O* = argmaxg P(r|c; ©)
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Expectation-Maximization algorithm

e The lower bound of logP(r|®) is the free energy
S,
log P(r|0) > F(6, Q) — ZQ (c[0) log 2E:€19)

P(c|©)
e ( variational distribution

e E-M iteratively optimize F
e E-step (inference): compute the variational posterior Q at
current ©

e M-step (learning): update © based on current Q
e Repeat until converge

Beck et al. (2012) NIPS
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Online Iearning USing EM MRC Brain Sciences Unit
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Thank you
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Example: Decision-making

MRC

Cognition and
Brain Sciences Unit

A
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Accumulating Evidence over time
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(Beck et al, 2008)



