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General Article

Should the human mind be seen as an engine of proba-
bilistic inference, yielding optimal or near-optimal per-
formance, as several recent prominent articles have 
suggested (Frank & Goodman, 2012; Gopnik, 2012; 
Téglás et al., 2011; Tenenbaum, Kemp, Griffiths, & 
Goodman, 2011)? Tenenbaum et al. (2011) argued that 
“over the past decade, many aspects of higher-level cog-
nition have been illuminated by the mathematics of 
Bayesian statistics” (pp. 1279–1280), pointing to treat-
ments of language; memory; sensorimotor systems; judg-
ments of causal strength; diagnostic and conditional 
reasoning; human notions of similarity, representative-
ness, and randomness; and predictions about the future 
of everyday events.

In support of this view, researchers have combined 
experimental data with precise, elegant models that pro-
vide remarkably good quantitative fits. For example, Xu 
and Tenenbaum (2007) presented a well-motivated prob-
abilistic model “based on principles of rational statistical 
inference” (p. 246) that closely fit adults’ and children’s 
generalization of novel words to categories at different 
levels of abstraction (e.g., “green pepper” vs. “pepper” vs. 
“vegetable”) as a function of how labeled examples of 
those categories were distributed.

In these models, cognition is viewed as a process of 
drawing inferences from observed data in a fashion nor-
matively justified by mathematical probability theory. In 

probability theory, this kind of inference is governed by 
Bayes’s law. Let D be the data and H

1
 through H

k
 be 

hypotheses; assume that it is known that exactly one of 
the hypotheses is true. Bayes’s law states that for each 
hypothesis,
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In this equation, p(H
i
|D) is the posterior probability of 

the hypothesis H
i
 given that the data D have been 

observed; p(H
i
) is the prior probability that H

i
 is true 

before any data have been observed; and p(D|H
i
) is the 

likelihood, the conditional probability that D would be 
observed assuming that H

i
 is true. The formula states that 

the posterior probability is proportional to the product of 
the prior probability and the likelihood. In most of the 
models that we discuss in this article, the “data” are infor-
mation available to a human reasoner, the “priors” are a 
characterization of the reasoner’s initial state of knowl-
edge, and the “hypotheses” are the conclusions that he or 
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she draws. For example, in a word-learning task, the data 
could be observations of language, and a hypothesis 
could be a conclusion that the word dog denotes a par-
ticular category of object (friendly, furry animals that 
bark).

Couching their theory in the language of evolution 
and adaptation, Tenenbaum et al. (2011) argued that “the 
Bayesian approach [offers] a framework for understand-
ing why the mind works the way it does, in terms of 
rational inference adapted to the structure of real-world 
environments” (p. 1285).

To date, these models have been criticized only rarely 
(Bowers & Davis, 2012; Eberhardt & Danks, 2011; Jones & 
Love, 2011). Here, through a series of detailed case studies, 
we demonstrate that two closely related problems—one of 
task selection, the other of model selection—undermine 
the conclusions that have been drawn about whether cog-
nition is in fact either optimal or driven by probabilistic 
inference. Furthermore, we show that multiple probabilistic 
models (some compatible with the observed data but oth-
ers not) are often potentially applicable to any given task, 
that published claims of fits of probabilistic models some-
times depend on post hoc choices that are unprincipled, 
and that, in many cases, extant models depend on assump-
tions that are empirically false, nonoptimal, or both.

Task Selection

In a recent study of physical reasoning, Battaglia, 
Hamrick, and Tenenbaum (in press) asked subjects to 
assess the stability of towers of blocks. Participants were 
shown a computer display of a randomly generated 
three-dimensional tower of blocks (for an illustration, see 
Fig. 1) and asked to predict whether it was stable or 
would fall, and if it fell, in what direction it would fall. 
Battaglia et al. proposed a model according to which 
human subjects correctly use and represent Newtonian 

physics, with errors arising only to the extent that sub-
jects are affected by perceptual noise, in which the per-
ceived x- and y-coordinates of a block vary around the 
actual position according to a Gaussian distribution. 
Within the set of problems studied, the model closely 
predicted the data, and the authors concluded, “Intuitive 
physical judgments can be viewed as a form of probabi-
listic inference over the principles of Newtonian mechan-
ics” (p. 5).

The trouble with such claims is that human cognition 
often seems near-normative in some circumstances but 
not others. A substantial literature, for example, has 
already documented humans’ difficulties with respect to 
other Newtonian problems (McCloskey, 1983). For exam-
ple, subjects in one study (Caramazza, McCloskey, & 
Green, 1981) were asked to predict what would happen 
if someone were swinging a rock on a string and then 
released the string (see Fig. 1). Most subjects predicted 
incorrectly that the rock would follow a circular or spiral 
path, rather than that the trajectory of the rock would be 
the tangent line. Taken literally, the conjecture of Battaglia 
et al. (in press) indicates that subjects should be able to 
answer this problem correctly; it also overestimates sub-
jects’ ability to predict accurately the behavior of gyro-
scopes, coupled pendulums, and cometary orbits.

As a less challenging test of the generalizability of the 
probabilistic-Newtonian approach endorsed by Battaglia 
et al. (in press), we applied their model to balance-beam 
problems (for an illustration, see Fig. 1). These involve 
exactly the same physical principles as the tower-of-
blocks problems; therefore, if Battaglia et al. were cor-
rect, it should be possible to account for subjects’ errors 
in terms of perceptual uncertainty. We applied their 
model (Gaussian distribution) of uncertainty to positional 
and mass information, both separately and combined. 
For a wide range of configurations, given any reasonable 
measure of uncertainty, the model predicted that subjects 

Fig. 1.  Illustration of three tests of intuitive physics (from left to right): estimating the stability of a tower of blocks, estimating 
the trajectory that a projectile on a string will follow if released, and estimating which way a balance beam will tip. Human 
subjects do well on the first task, but not the other two.
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would always answer the problem correctly (see the 
Supplemental Material available online).

As is well documented in the experimental literature, 
however, this prediction is false. Both children and many 
untutored adults (Siegler, 1976) frequently make a range 
of errors, such as relying solely on the number of weights 
to the exclusion of information about how far those 
weights are from the fulcrum. For this type of problem, 
which is only slightly different from the problems posed 
by Battaglia et al. (in press; both hinge on factors of 
weight, distance, and leverage), the model proposed by 
Battaglia et al. has a very poor fit. What held true in the 
specific case of their tower problems—that human per-
formance is near optimal—simply is not true for a prob-
lem governed by the laws of physics applied in a slightly 
different configuration. (Of course, the subjects in the 
study by Battaglia et al. were undergraduates trained at 
MIT, and such sophisticated subjects may do better than 
more typical subjects.)

The larger concern is that the probabilistic-cognition 
literature as a whole may disproportionately report suc-
cesses, a problem akin to Rosenthal’s (1979) file-drawer 
problem, which would lead to a distorted perception of 
the applicability of the approach. Table 1 summarizes 
many of the most influential findings in the cognitive lit-
erature on probabilistic inference and shows that, in 
many domains, results that fit naturally with probabilistic 
techniques and claims of optimality are closely paralleled 
by equally compelling results that do not fit so squarely. 
This raises important issues about the generalizability of 
the framework.

The risk of confirmationism is almost certainly exacer-
bated by the tendency of advocates of probabilistic theo-
ries of cognition (like researchers using many computational 
frameworks) to follow a breadth-first search strategy, in 
which the formalism is extended to an ever-broader range 
of domains (most recently, intuitive physics and intuitive 
psychology), rather than a depth-first strategy, in which 

Table 1.  Examples of Domains in Which Performance Has Been Found to Fit Naturally With Probabilistic Explanations in Some 
Cases but Not Others

Domain Apparently optimal performance Apparently nonoptimal performance

Intuitive physics Tower problems (Battaglia, Hamrick, & 
Tenenbaum, in press)

Balance-scale problems (Siegler, 1976)
Projectile-trajectory problems (Caramazza, 

McCloskey, & Green, 1981)
Incorporation of base 

rates
Various tasks (Frank & Goodman, 2012; 

Griffiths & Tenenbaum, 2006)
Base-rate neglect (Kahneman & Tversky, 1973; but 

see Gigerenzer & Hoffrage, 1995)
Extrapolation from  

small samples
Future prediction (Griffiths & Tenenbaum, 

2006)
Size principle (Tenenbaum & Griffiths, 2001a)

Anchoring (Tversky & Kahneman, 1974)
Underfitting of exponentials (Timmers & 

Wagenaar, 1977)
Gambler’s fallacy (Tversky & Kahneman, 1974)
Conjunction fallacy (Tversky & Kahneman, 1983)
Estimating unique events (Khemlani, Lotstein, & 

Johnson-Laird, 2012)
Word learning Using sample diversity as a cue to induction 

(Xu & Tenenbaum, 2007)
Using sample diversity as a cue to induction 

(Gutheil & Gelman, 1997)
Evidence selection (Ramarajan, Vohnoutka, Kalish, 

& Rhodes, 2012)
Social cognition Pragmatic reasoning (Frank & Goodman, 2012) Attributional biases (Ross, 1977)

Egocentrism (Leary & Forsyth, 1987)
Behavioral prediction of children (Boseovski & 

Lee, 2006)
Memory Rational analysis (Anderson & Schooler, 1991) Eyewitness testimony (Loftus, 1996)

Vulnerability to interference (Wickens, Born, & 
Allen, 1963)

Foraging Animal behavior (McNamara, Green, & Olsson, 
2006)

Information foraging (Jacobs & Kruschke, 2011)

Probability matching (West & Stanovich, 2003)

Deductive reasoning Deduction (Oaksford & Chater, 2009) Deduction (Evans, 1989)
  Overview Higher-level cognition (Tenenbaum, Kemp, 

Griffiths, & Goodman, 2011)
Higher-level cognition (Kahneman, 2003; Marcus, 

2008)
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some challenging domain is explored in great detail with 
respect to a wide range of tasks. More revealing than pick-
ing out arbitrary tasks in new domains might be deeper 
exploration of domains in which large bodies of “pro” and 
“anti” rationality literature are juxtaposed. For example, 
when people extrapolate, they are sometimes remarkably 
accurate, as Griffiths and Tenenbaum (2006) have shown, 
but at other times remarkably inaccurate, as when they 
anchor their judgments on arbitrary and irrelevant bits of 
information (Tversky & Kahneman, 1974). An attempt to 
understand the seemingly competing mechanisms involved 
might be more illuminating than the current practice of 
identifying a small number of tasks in each domain that 
seem to be compatible with a probabilistic model.

Model Selection

Closely aligned with the problem of how tasks are 
selected is the problem of how models are selected. Each 
model depends heavily on the choice of probabilities, 
which can come from three kinds of sources:

•• Real-world frequencies
•• Experimental subjects’ judgments
•• Mathematical models, such as Gaussian distribu-

tions or information-theoretic arguments

Moreover, a number of other parameters must also be set 
by basing the model or its parameters on real-world sta-
tistics either for the problem under consideration or for 
some analogous problem; by basing the model or its 
parameters on some other psychological experiment; by 
choosing the model or tuning the parameters to best fit 
the experiment at hand; or by using purely theoretical 
considerations, which are sometimes quite arbitrary.

Unfortunately, each of these choices can be problem-
atic. To take one example, real-world frequencies may 
depend very strongly on the particular data set being 
used, the sampling technique, or the implicit indepen-
dence assumptions. For instance, Griffiths and Tenenbaum 
(2006) studied estimation abilities. Subjects were asked 
questions like “If you heard that a member of the House 
of Representatives had served for 15 years, what would 
you predict his total term in the House would be?” The 
authors proposed a model in which the hypotheses were 
the different possible total lengths of the term, the prior 
was the real-world distribution of the lengths of repre-
sentatives’ terms, and the datum was the fact that the 
representative’s term of service was at least 15 years. The 
models for the other questions in this study were analo-
gous. These models accounted very accurately for the 
subjects’ responses to seven of the nine questions. 
Griffiths and Tenenbaum concluded that “everyday cog-
nitive judgments follow the . . . optimal statistical princi-
ples” and there is “close correspondence between 

people’s implicit probabilistic models and the statistics of 
the world” (p. 767).

But it is important to realize that the fit of a model to 
the data depends heavily on how the priors are chosen. 
To the extent that priors may be chosen post hoc, the 
true fit of a model can easily be overestimated, perhaps 
greatly. For instance, one of the questions in Griffiths and 
Tenenbaum’s (2006) study was, “If your friend read you 
her favorite line of poetry and told you it was line 
[2/5/12/32/67] of a poem, what would you predict for the 
total length of the poem?” (p. 770). How well a model fits 
this datum depends on what prior is presupposed. 
Griffiths and Tenenbaum based their prior on the distri-
bution of length in an online corpus of poetry. To this 
distribution, they applied a stochastic model motivated 
by Tenenbaum’s “size principle” (Tenenbaum & Griffiths, 
2001a): The model assumed that (a) the choice of favorite 
line of poetry was uniformly distributed over poems in 
the corpus; (b) given a particular poem, the choice of 
favorite line was uniformly distributed over the lines in 
the poem; and (c) the subjects’ answer to the question 
was the median of the posterior distribution.

From the apparent fit, Griffiths and Tenenbaum (2006) 
claimed that “people’s judgements for . . . poem lengths  
. . . were indistinguishable from optimal Bayesian predic-
tions based on the empirical prior distributions” (p. 770). 
They did not report a statistical analysis, but they included 
a diagram illustrating the fit. However, the fit between the 
model and the experimental results was not in fact as 
close as that diagram suggested. In the diagram, the 
y-axis represented the total length of the poem, which is 
the question the subjects were asked. However, it requires 
no great knowledge of poetry to predict that a poem 
whose fifth line has been quoted must have at least five 
lines; nor will an insurance company pay much to an 
actuary for predicting that a man who is currently 36 
years old will live to at least age 36. The predictive part 
of these tasks is to estimate how much longer the poem 
will continue, or how much longer the man will live. If 
instead the remaining length of the poem is used as the 
y-axis, as in the left-hand panel in Figure 2, though the 
model has some predictive value for the data, the data 
are by no means “indistinguishable” from the predictions 
of the model.

More important, the second assumption in Griffiths 
and Tenenbaum’s (2006) stochastic model, that favorite 
lines are uniformly distributed throughout the length of a 
poem, is demonstrably false. An online data set of favor-
ite passages of poetry (American Academy of Poets, 
1997–2013) clearly reveals that favorite passages are not 
uniformly distributed; rather, they are generally the first 
or last line of a poem, and last lines are listed as favorites 
about twice as frequently as first lines. As illustrated in 
the right-hand panel of Figure 2, a model that incorpo-
rated these empirical facts would yield a very different 
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set of predictions. Without independent data on subjects’ 
priors, it is impossible to tell whether the Bayesian 
approach yields a good or a bad model, because the 
model’s ultimate fit depends entirely on which priors 
subjects might actually represent. (See the Supplemental 
Material for a detailed discussion of the poetry data and 
their analysis.)

Griffiths and Tenenbaum’s (2006) analysis of movies’ 
gross earnings is likewise flawed. Subjects were asked,

Imagine you hear about a movie that has taken in 
[1/6/10/40/100] million dollars at the box office, but 
don’t know how long it has been running. What 
would you predict for the total amount of box office 
intake for that movie? (p. 770)

The data set used was a record of the gross earnings of 
different movies. The fit of the probabilistic model was 
conditioned on the assumption that movie earnings are 
uniformly distributed over time; for example, if a film 
earns a total of $100 million, the question about this 
movie is equally likely to be raised after it has earned $5 
million, $10 million, $15 million, and so on up to $100 
million. But movies, particularly blockbusters, are heavily 
front-loaded and earn most of their gross during the 
beginning of their run. No one ever heard that The Dark 
Knight (total gross = $533 million) had earned $10 

million, because its gross after the first 3 days was $158 
million (Wikipedia, 2013). Factoring this in would have 
led to a different prior (one in which projected earnings 
would be substantially lower) and a different conclusion 
(that subjects overestimated future movie earnings, and 
that their reasoning was not optimal).

To put this another way, the posterior distribution 
used by Griffiths and Tenenbaum (2006) corresponds to 
a process in which the questioner first picks a movie at 
random, then picks a number between zero and the total 
gross, and then formulates the question. However, if 
instead the questioner randomly picks a movie currently 
playing and formulates the question in terms of the 
amount of money it has earned so far, then the posterior 
distribution of the total gross would be very different, 
because the front-loading of earnings means that most of 
the movies playing at any given moment have earned 
most of their final gross. Again, one cannot legitimately 
infer that the model is accurate without independent evi-
dence as to subject’s priors.

Different seemingly innocuous design choices can 
yield models with arbitrarily different predictions in other 
ways as well. Consider, for instance, a recent study of 
pragmatic reasoning and communication (Frank & 
Goodman, 2012), which purportedly showed that “speak-
ers act rationally according to Bayesian decision theory” 
(p. 998). In the experiment, there were two separate 
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groups of subjects in two different conditions, called the 
“speaker” condition and the “listener” condition. (A third 
group, in the “salience” condition, is irrelevant to the dis-
cussion here; see the Supplemental Material for details.) 
Subjects in the listener condition were shown a set of 
three objects (see Fig. 3) and asked to bet on which 
object a speaker would mean if he or she used a particu-
lar word to refer to one of the objects (e.g., blue or 
circle).

Frank and Goodman (2012) showed that a probabilis-
tic “rational actor” model of the speaker, with utility 
defined in terms of surprisal (a measure of the informa-
tion gained by the hearer) could predict subjects’ perfor-
mance with near-perfect accuracy (Fig. 4, left panel). The 
trouble is, their model depended critically on the assump-
tion that listeners believe speakers follow a decision rule 

according to which they choose to use a word with a 
probability proportional to the word’s specificity. In the 
case of the set shown in Figure 3, blue has a specificity 
of .5, because it applies to two objects, and circle has a 
specificity of 1, because it applies to only one object; 
therefore, speakers who wish to specify the middle object 
would use circle two thirds of the time and blue one  
third of the time. Although this decision rule is not 
uncommon, Frank and Goodman might just as easily 
have chosen a model with a winner-take-all decision 
rule, following the maximum-expected-utility principle, 
which is the standard rule in decision theory. According 
to the winner-take-all rule, listeners expect speakers to 
always use the applicable word of greatest specificity; 
this would be circle if the middle object were intended. 
As Figure 4 shows, although the model with Frank and 
Goodman’s decision rule yielded a good fit to the data, 
other models, which are actually more justifiable a priori, 
would have yielded dramatically poorer fits. Details of 
the analysis are given in the Supplemental Material.

Experimenters’ choice of how to word the questions 
posed to subjects can also affect model fit. For example, 
rather than asking subjects which word they would be 
more likely to use in a given situation (which seems eco-
logically natural), Frank and Goodman (2012) asked sub-
jects in the speaker condition,

Fig. 3.  Illustration of the set of objects used in Frank and Goodman’s 
(2012) study. Subjects in the listener condition were asked to place a 
bet on which object a speaker meant if he or she used a particular word 
(e.g., blue or circle) to refer to one of the objects.
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Imagine that you have $100. You should divide 
your money between the possible words—the 
amount of money you bet on each option should 
correspond to how likely you would be to use that 
word. Bets must sum to 100! (M. C. Frank, personal 
communication, September 21, 2012)

In effect, subjects were asked to place a bet on what they 
themselves would say. The question was ecologically 
anomalous and coercive in that the phrasing “should 
divide” placed a task demand such that all-or-none-
answers were pragmatically discouraged. Had subjects 
instead been asked, for example, whether they would 
use blue or circle if they were talking to someone and 
wanted to refer to the middle object in the set shown in 
Figure 3, we suspect that 100% (rather than the 67% 
observed) would have answered “circle” (saying “blue” 
would be a violation of Gricean constraints, and an actual 
hearer would object that this word was ambiguous or 
misleading).

Table 2 enumerates some of the features that have 
varied empirically (without a strong a priori theoretical 
basis) across probabilistic models of human cognition. 
Individual researchers are free to tinker, but the collective 
enterprise suffers if choices across domains and tasks are 
unprincipled and inconsistent. Models that have been fit 

only to one particular set of data have little value if their 
assumptions cannot be verified independently; in that 
case, the entire framework risks becoming an exercise in 
squeezing round pegs into square holes. (Another vivid 
example of a Bayesian cognitive model with arbitrary, 
debatable assumptions that came to our attention too late 
for inclusion here concerns infants’ use of hypotheses 
about sampling techniques. This study, by Gweon, 
Tenenbaum, & Schulz, 2011, is discussed at length in the 
Supplemental Material.)

At the extreme, when all other methods for explaining 
subjects’ errors as arising through optimal Bayesian rea-
soning have failed, theorists have in some cases decided 
that subjects were actually correctly answering a question 
other than the one the experimenter asked. For example 
Oaksford and Chater (2009) explained errors in the well-
known Wason card-selection task by positing that the 
subjects assumed the distribution of symbols on cards 
that would occur in a naturalistic setting; Oaksford and 
Chater argued that under that assumption, subjects’ 
answers were in fact optimal. At first glance, this seems 
to offer a way of rescuing optimality, but in reality, it just 
shifts the locus of nonoptimality elsewhere, to the pro-
cess of language comprehension.

Tenenbaum and Griffiths (2001b) adopted much the 
same strategy in an analysis of subjects’ expectations for 

Table 2.  Features That Have Varied Across Probabilistic Models of Human Cognition

Study Domain Probabilities incorporated and their derivation
Decision

rule

Battaglia, Hamrick, & 
Tenenbaum (in press)

Intuitive physics Form of the distribution of block position: 
theoretically derived (Gaussian, corrected for 
interpenetration)

Mean block position: empirically derived
Standard deviation of block position: tuned 

post hoc

Maximum probability

Frank & Goodman  
(2012)

Pragmatic reasoning 
with respect to 
communication

Probability that a particular word will be 
chosen for a given object: derived from an 
information-theoretic model and confirmed 
by experiment

Prior probability that an object will be referred 
to: experimentally derived

Proportional

Griffiths & Tenenbaum 
(2006)

Future predictions 
(“everyday 
cognition”)

Distribution of examples except waiting: 
empirically derived

Distribution of the waiting example: derived 
from an inverse power law tuned to fit 
subjects’ responses

Median

Xu & Tenenbaum (2007) Word learning Priors on semantic categories and conditionals 
that an entity is in a category: derived from 
a complex model applied to experimentally 
derived dissimilarity judgments

Maximum probability

Note: Even in this relatively small sample of probabilistic models, model construction is based on a wide range of techniques, potentially cho-
sen post hoc from a wider range of possible options. Many of the models in these studies would have yielded poorer fits if priors had been 
derived differently or if different decision rules had been invoked (see, e.g., the discussion of Frank & Goodman, 2012, in the text).
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a sequence of coin flips (H = heads; T = tails). Finding 
that subjects believed the sequence THTHTHHT is more 
likely than the sequence TTTTTTTT, Tenenbaum and 
Griffiths asserted that what subjects are trying to say was, 
essentially, “given THTHTHHT, the maximum likelihood 
hypothesis is that the coin is fair, whereas given TTTTTTT, 
the maximum likelihood hypothesis is that the coin is 
biased.”

Although there may be instances in which subjects do 
genuinely misinterpret an experimenter’s questions, such 
explanations should be posited infrequently and must 
have strong independent motivation. Otherwise, resort-
ing to such explanations risks further weakening the pre-
dictive value of the framework as a whole. A response 
that can be rationalized is not the same as a response that 
is rational.

Discussion

Advocates of the probabilistic approach have wavered 
about what it is that they are showing. At some moments, 
they suggest that their Bayesian models are merely nor-
mative models about what humans ought to do, rather 
than descriptive models about what humans actually do. 
When the underlying mathematics is sound, there is no 
reason to question that modest interpretation. But there 
is also no reason to consider Bayesian models as null 
hypotheses with respect to human psychology in light of 
the apparent substantial empirical evidence that people 
sometimes deviate from normative expectations.

The real interest comes from the stronger notion that 
human beings might actually use the apparatus of prob-
ability theory to make their decisions, explicitly (if not 
consciously) representing prior probabilities, and updat-
ing their beliefs in an optimal, normatively sound fashion 
based on the mathematics of probability theory. It would 
be too strong to say that humans never behave in appar-
ently normative fashion, but it is equally too strong to say 
that they always do.

As we have shown, people sometimes generalize in 
ways that are at odds with correctly characterized empiri-
cal data (Griffiths & Tenenbaum’s, 2006, questions about 
poetry and films), and sometimes generalize according to 
decision rules that are not themselves empirically sound 
(Frank & Goodman’s, 2012, communication task) or in 
ways at that are not empirically accurate (balance-beam 
problems). The larger literature gives many examples of 
each of these possibilities, ranging from the underfitting 
of exponentials (Timmers & Wagenaar, 1977), to proba-
bility matching (West & Stanovich, 2003), to many of the 
cognitive errors reviewed by psychologists such as 
Kahneman and Tversky (Kahneman, 2003; Tversky & 
Kahneman, 1974, 1983).

We have also shown that the common assumption that 
“performance of a Bayesian model on a task defines 
rational behavior for that task” ( Jacobs & Kruschke, 2011, 
p. 9) is incorrect. As we have illustrated, there are often 
multiple Bayesian models that offer differing predictions 
because they are based on differing assumptions; at most 
one of them can be optimal. Even though the underlying 
mathematics is sound, a poorly chosen probabilistic 
model or decision rule can yield suboptimal results. (In 
three of the examples we reviewed, performance that 
was actually suboptimal was incorrectly characterized as 
optimal, in part because of an apparent match between 
the data and post hoc models that were Bayesian in char-
acter but incorrect in their assumptions.)

More broadly, probabilistic models have not yielded a 
robust account of cognition. They have not converged on 
a uniform architecture that is applied across tasks; rather, 
there is a family of different models, each depending on 
highly idiosyncratic assumptions tailored to an individual 
task. Whether or not the models can be said to fit depends 
on the choice of task, how decision rules are chosen, and 
a range of other factors. The Bayesian approach is by no 
means unique in being vulnerable to these criticisms, but 
at the same time, it cannot be considered to be a fully 
developed theory until these issues are addressed.

The greatest risk, we believe, is that probabilistic 
methods will be applied to all problems, regardless of 
applicability. Indeed, the approach is already well on its 
way to becoming a Procrustean bed into which all prob-
lems are fit, even if there are other much more suitable 
solutions. In some cases, the architecture seems like a 
natural fit. The apparatus of probability theory fits natu-
rally with tasks that involve a random process (Téglás et 
al., 2011; Xu & Garcia, 2008), with many sensorimotor 
tasks (Körding & Wolpert, 2004; Trommershäuser, Landy, 
& Maloney, 2006), and with artificial-intelligence systems 
that involve the combination of evidence. However, in 
other domains, such as intuitive physics and pragmatic 
reasoning, there is no particular reason to invoke a prob-
abilistic model, and it often appears that the task has 
been made to fit the model. It is an important job for 
future research to sort between cases in which the 
Bayesian approach might genuinely provide the best 
account, in a robust way, and cases in which fit depends 
on arbitrary assumptions.

Ultimately, the Bayesian approach should be seen as a 
useful tool, not a one-size-fits-all solution to all problems 
in cognition. Griffiths, Vul, and Sanborn’s (2012) effort to 
incorporate performance constraints, such as memory 
limitations, could perhaps be seen as one step in this 
direction; another important step will be to develop clear 
criteria for what would not count as Bayesian perfor-
mance. Another open question concerns development. 
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Work by Xu and Kushnir (2013) suggests that optimal, 
probabilistic models might be applied to children, but 
other studies, such as those by Gutheil and Gelman 
(1997) and Ramarajan, Vohnoutka, Kalish, and Rhodes 
(2012), suggest some circumstances in which children, 
too, might deviate from optimal performance.

The claims of human optimality, meanwhile, are sim-
ply untenable. Evolution does not invariably lead to solu-
tions that are optimal ( Jacob, 1977; Marcus, 2008), and 
optimality cannot be presumed in advance of empirical 
investigation. Any complete explanation of human cogni-
tion must wrestle more seriously with the fact that puta-
tive rationality very much depends on what precise task 
subjects are engaged in and must offer a predictive 
account of which tasks are and are not likely to yield 
normative-like performance.

More broadly, if the probabilistic approach is to make 
a lasting contribution to researchers’ understanding of 
the mind, beyond merely flagging the obvious facts that 
people (a) are sensitive to probabilities and (b) adjust 
their beliefs (sometimes) in light of evidence, its practitio-
ners must face apparently conflicting data with consider-
ably more rigor. They must also reach a consensus on 
how models will be chosen, and stick to that consensus 
consistently. At the same time, to avoid unfalsifiability, 
they must consider what would constitute evidence that 
a probabilistic approach is not appropriate for a particu-
lar task or domain; if an endless array of model features 
can be varied in arbitrary ways, the framework loses all 
predictive value.
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