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The ability to choose rapidly among multiple targets embedded in a
complex perceptual environment is key to survival. Targetsmay differ
in their reward value aswell as in their low-level perceptual properties
(e.g., visual saliency). Previous studies investigated separately the
impact of either value or saliency on choice; thus, it is not known how
the brain combines these two variables during decision making. We
addressed this question with three experiments in which human
subjects attempted to maximize their monetary earnings by rapidly
choosing items from a brief display. Each display contained several
worthless items (distractors) as well as two targets, whose value and
saliencywere varied systematically.We compared the behavioral data
with the predictions of three computational models assuming that (i)
subjects seekthemostvaluable iteminthedisplay, (ii) subjects seekthe
most easily detectable item, and (iii) subjects behave as an ideal Baye-
sian observer who combines both factors to maximize the expected
rewardwithineachtrial.Regardlessof thetypeofmotorresponseused
to express the choices, we find that decisions are influenced by both
value and feature-contrast in a way that is consistent with the ideal
Bayesian observer, even when the targets’ feature-contrast is varied
unpredictably between trials. This suggests that individuals are able to
harvest rewards optimally and dynamically under time pressurewhile
seeking multiple targets embedded in perceptual clutter.
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Animals and humans often need to make rapid choices among
multiple targets embedded in a noisy perceptual environment.

Consider, for example, a predator deciding which of several prey to
pursue.Themore valuable targetsmight beperceptually less salient,
and thus harder to find (e.g., camouflaged prey), while less valuable
targetsmay be perceptuallymore salient and easier to find. To solve
this task, the animal needs to combine the perceptual and value-
related informationwhilemakingchoices.This raisesa fundamental
question:Are rapid choices in cluttered environments dominatedby
value information (e.g., biased toward seeking the more valuable
items) or by perceptual information (e.g., biased toward seeking the
more easily and quickly detectable items)?
Understanding howperceptual saliency and value information are

combined tomake decisions is important for several reasons. From a
computational perspective, it is not known how the brain trades off
saliency and value under time pressure, especially when they have
opposing influences on the decision: Is it optimized for reward har-
vesting, or is it based on simpler principles of choosing the most
valuable or the most easily detectable item? The brain’s solution to
this tradeoff is not obvious, because items that are more salient are
easier to find (1, 2) and, other things being equal, have a higher
probability of yielding a reward. From a behavioral perspective, it is
not known whether humans take into account saliency-induced var-
iations inprobabilitywhenmakingdecisionsunderuncertainty.From
a vision science perspective, previous research on visual search has
focusedonsearching fora single target amidclutter (2, 3), and it isnot
known what happens when subjects search for multiple targets that
differ both in saliency and in value. In particular, although saliency is
known to affect saccades in a fast, automatic, and bottom-upmanner
(4), it is not known whether value can have a similar fast effect.
Previous studies have examined the roles of visual saliency and

economic or subjective value in isolation. For example, several

studies showed that decisions are biased toward the item or loca-
tion associated with a higher magnitude and probability of reward
(5–8), but these studies did not manipulate visual saliency. On the
other hand, studies on visual saliency did not manipulate the
reward outcome associated with choosing an item. These studies
showed that during free viewing of natural scenes and videotapes,
saccades are automatically drawn to more salient image regions
(e.g., locationswithhigh feature-contrast in luminance, orientation,
and motion) (9–13) and that salient targets are detected faster
and better amid clutter (1, 2). Thus, whether and how the brain
might combine information about visual saliency and value to form
rapid decisions have not yet been investigated.
Tostudy this question,wecollecteddata fromanumberofhuman

subjects who searched visually for two valuable targets amid clutter.
The goal of our subjects was to maximize the reward earned by
rapidly choosing items from a brief display (Fig. 1A). We system-
atically varied the relative value and feature-contrast of the targets
(a measure of saliency based on the difference in features between
the target and distractor) across blocks and studied how our sub-
jects’ behavior changed as a consequence. We tested three possible
models of our subjects’ behavior. Thefirstmodel ismotivated by the
literature on visual search; it assumes that subjects will attempt to
select the most salient or easily detectable target based on visual
properties of the targets (1, 14). The second model is motivated by
the literature on economics; it assumes that subjects attempt to
select themost valuable target based on the economic properties of
the targets (5). The third model assumes that the brain dynamically
combines information about value and visual saliency to select the
location that gives the maximum expected reward.
Note that it is not possible to choose a priori, or basedon existing

data, one of the threemodels.Model 1 is motivated by the fact that
the brain might not have sufficient time to incorporate reward
considerations during rapid decisions, which would imply that
rapid choices would be drivenmostly by the perceptual features of
the display. Model 2 is motivated by the fact that because the
organism cares only about maximizing the amount of rewards
harvested, the brain might have implemented a computational
shortcut of always attempting to select the highest value stimuli
(e.g., always seek the most valuable prey). Model 3 is the optimal
solution to the computational problem faced by the organism, and
thus is of particular interest.

Results
Decision Models. Our models are represented schematically in Fig.
1B. All three models first estimate the location of both targets. This
estimate is probabilistic, and it is carried out using the optimal
Bayesian estimator. All models assume that noisy estimates of the

Author contributions: V.N., C.K., A.R., and P.P. designed research; V.N. performed re-
search; V.N., A.R., and P.P. contributed new reagents/analytic tools; V.N. analyzed data;
and V.N., C.K., A.R., and P.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: vidhya@caltech.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0911972107/DCSupplemental.

5232–5237 | PNAS | March 16, 2010 | vol. 107 | no. 11 www.pnas.org/cgi/doi/10.1073/pnas.0911972107

mailto:vidhya@caltech.edu
http://www.pnas.org/cgi/content/full/0911972107/DCSupplemental
http://www.pnas.org/cgi/content/full/0911972107/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.0911972107


stimulus feature (e.g., orientation, brightness) are computed at each
location x.Wehypothesize a diverse population of orientation-tuned
mechanisms at each location whose output may be converted into a
noisy estimate of the stimulus orientation, wherein the noise is
approximately Gaussian (15). Formally, let Tx be the stimulus, θ(Tx)
be the stimulus feature, and ax be the estimate of the stimulus feature
at location x. Thus, ax|Tx ∼ G[ax;μ = θ(Tx), σ], where σ is the noise
parameter, andG(·;μ,σ) denotes the univariateGaussianprobability
density function with the mean equal to μ and the SD equal to σ. All
three models involve a single free parameter, σ. We denote the
resulting vector of estimates at eight locations in the display as a!.
All models require the computation of posterior probabilities.

The posterior probability of stimulus Tx occurring at location x is
denoted by PðTxj a!Þ and is computed from the likelihood Pð a!jTxÞ
and a prior probability P(Tx) using Bayes’ theorem. If the display
consists of n stimuli (two targets, H and V, as well as n-2 dis-
tractors, D), and if the probability that any stimulus occupies any
position is the same, then we have that

PðTxj a!Þ ¼ Pð a!jTxÞPðTxÞ
Pð a!Þ [1]

PðTxÞ ¼ 1
n
; if Tx ∈ fH;V g; n− 2

n
; otherwise [2]

The likelihood term can be further expanded to make use of the
fact that exactly one H and one V appear in the display. Thus,
the occurrence of H at location x implies that V must occur at
some other location y ≠ x and the distractors must appear at
other locations z ≠ x, y. It follows that

Pð a!jTx ¼ HÞ ¼PðaxjTx ¼ HÞ∑
y≠x

�
PðTy ¼ V ÞPðayjTy ¼ V Þ

∏
z≠x;y

PðazjTz ¼ DÞ
� [3]

Pð a!jTx ¼ V Þ ¼PðaxjTx ¼ V Þ∑
y≠x

�
PðTy ¼ HÞPðayjTy ¼ HÞ

∏
z≠x;y

PðazjTz ¼ DÞ
� [4]

Pð a!jTx ¼ DÞ ¼ PðaxjTx ¼ DÞ∑
y≠x

�
PðTy ¼ HÞPðayjTy ¼ HÞ

∑
z≠x;y

�
PðTz ¼ V ÞPðazjTz ¼ V Þ ∏

w≠x;y;z
PðawjTw ¼ DÞ

��

[5]

A detailed derivation of these equations is presented in SI Text.
The terms on the left denote the global likelihood of an item’s
presence (target/distractor) at location x based on the sensory
observations at all locations. In contrast, the terms on the right
refer to the local likelihoods of an item’s presence at a location
based on the sensory observation at that single location, P(ax|Tx).
Substituting Eq. 3–5 in Eq. 1, we can obtain the posterior prob-
ability of each object’s presence at each location.
The first model (M1) assumes that the decision is dominated by

visual properties like feature-contrast (16, 17). In thismodel, subjects
use their prior knowledgeofwhichof the two targets (HorV) ismore
salient (learned during the 10 training trials preceding each block)
and then search for that target when the display appears. Suppose,
for instance, that themore salient target isV;according to thismodel,
subjects will choose the location x, where PðTx ¼ V j a!Þ is maximal.
The secondmodel (M2)assumes that thedecision is dominatedby

economic properties of the targets (5), such as value. Here, subjects
determine in advance (from the 10 training trials) which of the two
targets (H orV) has the higher payoff and then search for that target
when the display appears. For example, consider a condition for Fig.
1A in which fixating on the horizontal bar pays 20 points, fixating on
the vertical bar pays 10 points, and fixating on the distractors pays
nothing. In this case, the model assumes that subjects will search for
the horizontal bar andwillfind it with ahigher probability if it ismore
salient and with a lower probability otherwise. More formally, if the
most valuable target is H, then subjects, according to thismodel, will
choose the location x where PðTx ¼ Hj a!Þ is maximal.
The third model (M3) has not been previously considered in the

search literature. It assumes that the subject computes the expected
reward associated with choosing each location using optimal
Bayesian inference and then chooses the location with the highest
expected reward. We refer to this model as the reward maximizer
because it optimizes the expected reward trial-by-trial, given the
noise in the system. Note that, unlikeM1 andM2, M3 predicts that
subjects will not search for a fixed target (e.g., horizontal); instead,
they will select dynamically and image-by-image the location of
maximum expected reward.More formally, themodel assumes that
subjects compute the expected reward at every location x, denoted
as E[Rx] and then choose the location associated with the highest
expected reward. The expected reward at a location is given by

E
�
Rx

� ¼ ∑
i¼fD;H;Vg

viPðTx ¼ ij a!Þ [6]

where vi denotes the value associated with the item and
PðTx ¼ ij a!Þ is computed as in Eq. 1.
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Fig. 1. Basic experiment and competing theories. (A) Experiment 1. Stimuli in
the display were either “targets” or “distractors.” Subjects earned a reward
for fixating a target for at least 100 ms during the display period but did not
earn a reward for fixating a distractor. There were two types of targets, hor-
izontal bars (H) and vertical bars (V), and one of each was present in each
display. Distractors were diagonal bars whose orientation was varied across
blocks to manipulate the “feature-contrast” of the targets (orientation dif-
ferencebetween the targetanddistractors). Subjects expressed their choiceby
fixating on the chosen item and were asked to try to maximize their total
earnings. The experiment consisted of several blocks of 50 trials. Across blocks,
we varied the value and feature-contrast of the targets. At the beginning of
each block, subjects were informed about the value of targets H and V (e.g.,
value of H is 20 points, value of V is 10 points), and they received training. (B)
We compared the performance of three different computational models. In
M1, fixations are deployed to the location that is most likely to contain the
target with the maximum feature-contrast for the block. In M2, fixations are
deployed to the location that is most likely to contain the target associated
with the highest value for the block. In M3, fixations are deployed to the
location associated with the maximum expected reward for the trial, as pre-
dicted by an ideal Bayesian observer model.
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Experiment 1. This experiment investigates how the brain com-
bines feature-contrast and value information about objects when
subjects express their choice by moving their eyes. The feature-
contrast and value of the targets were manipulated independ-
ently. As illustrated in Fig. 1A and described in Methods, the
subjects’ task was to harvest the maximum possible amount of
monetary rewards by fixating items in the display.
Fig. 2A–D displays the performance data for one subject across

different relative value conditions (Figs. S1–S5 provide the data
from the remaining subjects). The figure illustrates two patterns
thatwerepresent in all the subjects. First, the probability offixating
onH increases with its relative feature-contrast for all values of the
targets. Second, the probability of fixating onH also increases with
its relative value.
For each subject and model, we determined the maximum-like-

lihood estimate of the internal noise parameter (σ) from the data in
the high-value condition (in which targetH is twice as valuable as V;
Fig. 2C) and used it to predict behavior in three other value con-
ditions (Fig. 2 A, B, andD andMethods provide details). Fig. 2A–D
compares the predictions of the models with subjects’ data. Note a
few things about the predictions made by the models. First, all of
them predict that the frequency of fixations to H should increase
with its feature-contrast. Second, model M1 predicts that fixations
are independent of the values (M1 curves are identical across Fig. 2
A–D), although the data appear to shift gradually from right (Fig.
2A) to left (Fig. 2D). Third,modelM2 predicts that the less valuable
target will almost never be fixated, even if it has higher feature-
contrast; this prediction is clearly violated (Fig. 2A, notice that the
M2 curve is constant at zero over the whole feature-contrast range).
Fourth, model M3 not only performs better than models M1 and
M2, but, more importantly, it predicts the data well, as shown by a
quantitative comparison based on a χ2 measure of goodness of fit as
well as a Bayesian model comparison (18) of the log likelihood of
data given eachmodel (Fig. 2F). This last point is further explored in
Fig. 2E, which shows that subjects’ fixations correlate well with the
predictions of M3 (R2 = 0.97). We can conclude that subjects’
behavior is highly consistent with the reward maximizer model M3
and that both valueand feature-contrast affect the saccadicdecision.

Experiment 2. To test if the previous findings are robust to the
presence of other types of low-level features, we repeated
experiment 1 using brightness intensity, rather than orientation, as
the feature differentiating the target from the distractors (Fig. 3
andMethodsprovide details).Weobtained data in 21 conditions (7
feature-contrast× 3 value conditions). Fig. 3C–E displays the data

for one of the subjects (Figs. S6 and S7 provide the data for the
remaining subjects). Note that the key findings from the first
experiment also hold here: First, the saccadic decision is affected
by both value and feature-contrast, and, second, M3 (reward
maximizer) provides a quantitative account of subjects’ data.

Experiment 3. The findings from experiments 1 and 2 show that
subjects can optimize the reward when the targets’ values and fea-
ture-contrast are fixed within a block. One hypothesis for why sub-
jects perform so well is that they may learn the optimal strategy
during the training period (10 trials preceding each experimental
block) and thendeploy this learned strategy in the remaining trials in
that block. This raises an important question: Can subjects optimize
reward dynamically in the absence of training or learning? To test
this, we designed a third experiment in which we varied the tar-
gets’ feature-contrast unpredictably between trials as opposed to
the blocked condition in experiments 1 and 2.
Another question is whether the findings of experiments 1 and 2

reflectproperties specific to the saccadic systemorageneral property
of decision making, regardless of the type of motor response (e.g.,
key press, saccade, verbal report) used to express the choices. To test
this, we allowed subjects to report their decision through either a key
press in half of the trials or through a saccade in the other half. We
made one key modification in the display response paradigm: Sub-
jects maintained cental fixation while viewing the display for 300ms.
The display was followed by amask containing amasking stimulus at
each location as well as a number from 1 to 8 identifying each loca-
tion uniquely. Subjects were instructed to report their decision as
soon as possible by saccading to the chosen location or by typing on a
computer keyboard a number from 1 to 8 to indicate the chosen
location (maximum response time was 2 s).
The results across nine conditions (3 value × 3 feature-contrast

conditions) are shown in Fig. 4). Fig. 4B andC shows that decisions,
regardless of whether expressed through a key press with a finger or
through a saccadic eye movement, are influenced by both value and
feature-contrast. Comparing Fig. 4 B and C does not reveal any
significant difference (pairwise t tests, 0.05 significance level)
between the decisions expressed through a key press or saccade. The
surprising finding is that despite trial-by-trial variations in feature-
contrast, subjects’performance is still optimal fordecisionsexpressed
through a key press (Fig. 4 D and E) and for decisions expressed
through a saccade (Fig. 4 F andG). This rules out constant decision
strategies that may result from ample practice or overtraining and
shows that subjects are optimizing reward on a trial-by-trial basis by
using a dynamic strategy of choosing flexibly different targets
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Fig. 2. Results for experiment 1. (A–D) Each panel
shows the data for subject 1 in a different value
condition as a function of the ratio of feature-
contrast of the targets. Each dot refers to the fre-
quency of fixations on target H under the particular
value and feature-contrast parameters; the error
bar denotes the SE. Each panel also shows the
predictions made by the three models (model
parameters were estimated using data in C and
were used to generate predictions in A, B, and D)
and the χ2 goodness-of-fit statistic for each of the
models. In all cases, the ideal observer model (M3)
accounts best for the data. (E) Plot of each model’s
predictions for all 28 experimental conditions vs. a
subject’s peformance. Each dot represents the fre-
quency of fixations on target H in a different value
and feature-contrast condition, as observed in the
subject’s data and as predicted by the model. (F)
Bayesian model comparison. In all six subjects, M1
(light gray) and M2 (dark gray) have a lower like-
lihood of generating the data than the ideal
observer model (M3).
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between trials rather thana static strategyof choosing the same target
on all trials in a block. Thus, Fig. 4 B–G shows clearly that decisions,
regardless of the type of motor response (key press vs. saccade), are
influenced by both value and feature-contrast optimally.

Discussion
Although objects in the real world usually differ in both visual
saliency and economic value, previous studies on saccades and
decisionsamongmultipleobjects havemostly examined the effect of
saliency (9–13) and value (5–8) in isolation. For example, Platt and
Glimcher (5) showed that saccadic decisions are biased toward the
item associated with the higher expected reward, but they did not
vary the feature-contrast or saliency of items. Similarly, Berg et al.
(13) studiedhowvisual saliency affects saccadesbutdidnot consider
the role of stimulus value or reward outcome associated with the
saccade. In contrast, we explored the computationalmechanisms by
which the brain combines visual saliency and value information to
make rapid decisions. Our experimental results show that decisions
are affected by both variables in a manner that leads to the max-
imization of the expected rewardwithin each trial and are consistent
with the predictions of an ideal Bayesian observer. We found that
such reward maximization behavior is robust across multiple visual
features, such as orientation and intensity, and does not depend on
the type ofmotor response used to express the choices (key press vs.
saccade). Furthermore, behavior is near-optimal even when the
targets’ feature-contrast is varied unpredictably between trials,
which suggests that subjects deploy a dynamic decision strategy.
An important open question is where in the brain is the infor-

mation about value and feature-contrast combined. One hypoth-
esis is that value integrationmay occur as early as in V1, possibly in
the form of a greater top-down attentional bias on the more val-
uable target (19, 20). A second hypothesis is that value integration
may occur later in the lateral intraparietal area (LIP), an area that
has been shown to integrate multiple sources of information such
as attention (21, 22), saliency (23), expected rewards (5, 24, 25),
and saccade selection (26). Given our results, it would be worth
investigating if the LIP encodes a reward-modulated saliency map
that implements the computations of the Bayesian observer.
Our findings add to the growing literature on the Bayesian

optimality of the motor and perceptual systems (27, 28). In our

study, both feature-contrast and value of the stimulus are manip-
ulated simultaneously. We found that learning was fast in experi-
ments 1 and 2; after a change in either feature-contrast or value of
the stimulus, subjects learnedwithin 10 training trials to deploy the
optimal strategy of saccading to the location offering themaximum
expected reward. Other studies on rapid motor tasks and target
detection tasks have also reported very fast learning (29, 30).
These findings suggest that humans are capable of performing
rapid perceptual and motor decisions optimally in both reaching
tasks and saccadic/key press tasks.
The results of the experiments are also consistent with the exis-

tence of a general, motor-independent, decision-making process in
which the decision is formed first and is later expressed through any
motor response (e.g., saccade, keypress). Future studies are required
to investigate whether rewardmaximization behavior applies only to
the final decision made to acquire explicit rewards or whether it
extends to intermediate actions like saccades that are used to gather
visual information about the display in the absence of direct reward
outcomes. This study focused on feature-contrast of simple stimuli
(oriented bars, disks of varying brightness). Additional studies are
required to testwhether the currentfindings extend tomore complex
stimuli (e.g., faces, cars) embedded in natural scenes (14).
Finally, our findings have implications for visual search tasks that

involve multiple targets. Unlike most previous studies focusing on
the search for a single target (3) and on the role of visual properties
of the display [e.g., number of items in the display (1, 31), distractor
heterogeneity (32), target-distractor similarity (32)], we ask how
value and visual information combine to influence search in the
presenceofmultiple valuable targets.Ourfindings showthat instead
of searching for a single target that is most valuable or most salient,
humans go to the location of the maximum expected reward per
trial, and thus perform optimal reward harvesting.

Methods
Experiment 1. Subjects. Six subjects (one author, five naive California Institute
of Technology students) participated in the experiment after providing
informed consent.
Task. On every trial, subjects saw a display consisting of eight oriented bars (Fig.
1A). The display included two valuable “targets”—a horizontal bar H (ori-
entation, θH=0°; value,vH) andavertical barV (orientation, θV=90°; value, vV)—
embedded among six identical worthless “distractors”D (orientation, θD; value,
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vD = 0). The experiment was divided into blocks of 50 trials during which the
value and orientation parameterswere kept constant. At the beginning of each
block, subjects saw a screen with a picture of each target and its value. When
theywere ready, they pressed a key to start the block. They received 10 practice
trials. To earn the reward associated with a target, subjects had to find it in the
display and fixate it for at least 100 ms. Subjects were instructed to execute the
fixations that maximized the reward earned during the 500 ms of stimulus
presentation. Subjects were allowed to execute multiple fixations in a trial.
However, because theymostlyfixated on one stimulus (Fig. S8),we analyze only
the location of the first fixation in the rest of the paper.

The location of the targets and the distractors was randomized across eight
fixed locations equally spaced on a circle at 7° eccentricity, with the only con-
straint being that the two targets could not appear next to each other. The
stimuli were 0.3° × 1.8° in size, and the interitem spacing was 5.4°. Subjects
viewed the display on a 21-inch cathode ray tube (CRT) monitor (28°× 21°) that
was viewed from a distance of 85 cm. We used an Eyelink 1000 eye tracker
(manufacturedby SRResearch) to record subjects’eyemovements (approximate
accuracy of 0.5°). We calibrated the eye tracker (nine-point calibration) at the
beginning of each session (and whenever the subject moved between blocks).

Wedenote the feature-contrast of target H (V) as cH= | θH – θD| (cV= |θV – θD|),
which measures the orientation difference between the target and the dis-
tractors. The experiment consisted of seven feature-contrast conditions. In
each feature-contrast condition, we used a different level of targets’ feature-
contrast by changing the distractor orientation: θD∈ {5°, 15°, 30°, 45°, 60°, 75°,
85°}. For example, the feature-contrast of the horizontal target H is lowwhen
the distractors are nearly horizontal (θD=5°), but its feature-contrast increases
as the distractors become steeper, until it reaches its maximum when the
distractors are steepest (θD= 85 °). The opposite is true for the feature-contrast
of the vertical target V. Intuitively, targets are difficult tofindwhen they have
low feature contrast and easy to find when they have high feature-contrast.

To control for the potential effect of arousal, the sum of value of the two
targetswasaconstantacrossall experimental conditions (vH+vV=30points).We
varied the ratioof the targets’ values vH/vV∈ {0.5, 1, 2, 4} acrossmacroblocks, and
each macroblock consisted of seven blocks in which we varied the targets’ fea-
ture-contrast. Thus, we had a total of 28 experimental conditions (7 feature-
contrast × 4 value conditions). The order of the macroblocks, and of the blocks
within each macroblock, was randomized for each subject.

Subjects were initially trained in the condition with equal feature-contrast
(θD = 45°; hence, cH = cV), with one of the targets twice as valuable as the other
(e.g., vH/vV = 2) until that target was fixated in at least 60% of trials. This
procedure was repeated for each target. The experiment began after this
initial training.Before the start of theequally valued condition (vH= vV) ineach
of the seven feature-contrast conditions, to undo bias from previous con-
ditions, subjects received 10 training trials in which the value of target H
alternated between twice or half of target V. Before the start of each sub-
block, subjects received 10 training trials in that condition.
Psychometric Curves. We analyzed the pattern of fixations by measuring the
fraction of first fixations to target H as a function of its feature-contrast and
value. Psychometric curves for targetH, V anddistractorDare shown in Fig. S9.
Model Fits. Models M1 through M3 (described in Results) are characterized by
a single parameter: the noise in sensory representation σ. We simulated each
model in the 28 different experimental conditions (i ∈ {1,2...28}) under dif-
ferent noise levels (σ ∈ {10, 11...60}°; we used a wrapped normal distribution
for orientation representation because orientation is in circular space). For
each model M, condition i, and noise level σ, we simulated 10,000 trials, and
determined the model’s predicted fraction of fixations on H, pi. Let the
subject’s data in condition i be denoted by Di, comprising ni fixations on H in
a total of N trials in which ni is a binomial random variable; thus, the
probability of the subject’s data may be expressed as follows:
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Fig. 4. Results for experiment 3. (A) Task is similar to that in
experiment 1 except that subjects maintained central fixation
for 300 ms while viewing the display, following which they
expressed their decision either through a key press (in half of
the trials) or a saccade (in the other half) to indicate the chosen
location. In addition, the targets’ feature-contrast was varied
unpredictably between trials, as opposed to experiments 1 and
2, where it was fixed within the block. (B and C) Panels show
how the decisions made by the average subject vary with the
targets’ feature-contrast and values when choices were
reported through a key press (B) or through a saccade (C).
Error bars reflect the SEM detection rate across subjects. (D
and E) Model predictions vs. data for decisions expressed
through a key press. Comparisons between the three models
show that the predictions of the ideal observer model (M3)
provide the best fit and correlate best with the data. (F and G)
Models are similar to those in D and E except that they rep-
resent decisions expressed through a saccade.
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logPðDjσ;MÞ ¼ ∑
i
logPðDijσ;MÞ

¼ ∑
i
logCðN; niÞ þ nilogpi þ ðN − niÞlogð1− piÞ

where C(N, ni) is the number of ways of choosing ni out of N trials. We deter-
mined the estimate of σ that maximized the likelihood of a subset of the sub-
ject’s data, P(Di|σ, M), (a different estimate for each subject) under the high-
value condition (i.e., the seven data points in Fig. 2C). We then used this max-
imum-likelihood estimate of σ to predict performance in the remaining exper-
imental conditions.Wedetermined the χ2 goodness-of-fit statistic by comparing
each subject’s initial fixations with those predicted by the model. Results are
depicted in Fig. 2 A–D.

Although the models were fitted to data in Fig. 2C, the best fit of M1 and
M2 are poor in comparison to M3. This is because M2 always looks for the
more valuable target H, regardless of its feature-contrast; thus, it over-
predicts % fixations when H has very low feature-contrast. M1 always looks
for the more salient target, and hence underpredicts % fixations when H is
less salient but more valuable, whereas M3 combines both value and fea-
ture-contrast information and flexibly chooses target H or V depending on
whichever has higher expected reward, thus predicting the data well.

In ambiguous conditions when both targets are equally valuable (or
equally salient), M2 (or M1) chooses either target with equal probability.
Thus, in Fig. 2B, when both targets are equally valuable, M2 looks for target
H on 50% of trials and for target V on the remaining trials; hence, it predicts
fewer fixations on H than seen in the data.
Bayesian Model Comparison. We compared the performance of models M1
throughM3bycomparingtheirrelativelikelihoodofgeneratingthedata,givenby

PðDjMÞ ¼ ∑
σ
PðDjσ;MÞPðσÞ

where P(σ) is a uniformdistribution over the range {10, 11...60}°, and P(D|σ,M) is
computedusing(Eq.7). Fig.2Fplots the log-likelihoodratio, logPðDjMjÞ

PðDjM3Þ ðj∈f1; 2gÞ.

Experiment 2. Subjects. Three naive subjects (all of whom also performed
experiment 1) participated in the experiment after providing informed consent.
Task. Becausetheexperimentissimilartothepreviousone,onlythekeydifferences
arediscussed.Theobjectswerecirculardisks (1.8°diameter)ataneccentricityof7°
whose intensity varied from low to high. The display consisted of two targets—H
(high intensity, IH = 80 cd/m2) and L (low intensity, IL = 26 cd/m2)—embedded
among six identically bright distractor disks (D) in a dark background (0.3 cd/m2).
We systematically varied thebrightness of the distractorswithin the intervalwith
aminimumat IL and amaximumat IH.We obtained 13 samples from the interval

thatwereequally spacedin the logscale;weused theextremesamples1and13as
targets L andHand the intermediate samples {3, 5, 6, 7, 8, 9, 11} as thedistractors.
Across seven blocks, we varied the intensity of the distractors, and within each
subblock,wevaried thevaluesof the targets,vH/vL∈ {1, 2, 4}, yieldinga totalof 7×
3 = 21 experimental conditions, consisting of 50 trials each.
Data Analysis and Model Fits. Data analysis and model fits were identical to
those in experiment 1.

Experiment 3. Subjects. Five naive subjects and one author participated in the
experiment after providing informed consent.
Task. This experiment is similar toexperiment 1 except for four keydifferences.
First, subjects viewed thedisplay for 300mswhilemaintaining centralfixation.
Second, the display was followed by a mask (formed by superimposing the
horizontal, vertical,anddistractor stimuliateach location).Third,assoonasthe
mask appeared, subjects were instructed to choose one of the stimuli and to
indicate their choice through either a key press (i.e., a number from 1 to 8
corresponding to the eight locations in the display) or a saccade to the chosen
location. Fourth, we varied the targets’ feature-contrast unpredictably
between trials, as opposed to the blocked condition in experiments 1 and 2.
For each type of motor response (key press or saccade), we systematically
varied the values of the targets across three blocks (vH/vV ∈ {0.5, 1, 2}) of 150
trials each. The order of the blocks was randomized across subjects. Within
each block, we varied the targets’ orientation-contrast by changing the dis-
tractor orientation randomly between trials, θD ∈ {30, 45, 60}°. The type of
motor response used to indicate choices was kept constant within blocks.
Data analysis and model fits. We averaged the data across all six subjects and
analyzed thedata in a similarmanner as in experiment 1. There is, however, one
importantdifferencebetweenthe idealobservermodel forexperiments1and3.
In experiment 1, only a single type of distractor, D, occurred within a block (i.e.,
distractor orientation was fixed); hence, the term in Eqs. 3–4 denoting the joint
likelihood of distractors at locations 1. . .Z was P(a1. . .aZ|D) = Πz=1

ZP(az|D). How-
ever, in experiment 3, distractor orientation varied randomly between trials;
thus, the distractors on a given trial were identical but could be any of three
types: D1, D2, or D3. Accordingly, the term in Eqs. 3–4 denoting the joint like-
lihood of distractors was updated as Pða1 . . .aZ jDÞ ¼ ∑3

i¼1Pða1 . . . aZ jDiÞ
PðDi jDÞ ¼ ∑3

i¼1PðDi jDÞΠZ
z¼1PðazjDiÞ ¼ 1

3∑
3
i¼1Π

Z
z¼1PðazjDiÞ, assuming that each

type of distractor can occur with one-third probability.
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