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Abstract

This article describes a method for selecting design parameters and a particular sequence of events in fMRI so as to maximize statistical
power and psychological validity. Our approach uses a genetic algorithm (GA), a class of flexible search algorithms that optimize designs
with respect to single or multiple measures of fitness. Two strengths of the GA framework are that (1) it operates with any sort of model,
allowing for very specific parameterization of experimental conditions, including nonstandard trial types and experimentally observed
scanner autocorrelation, and (2) it is flexible with respect to fitness criteria, allowing optimization over known or novel fitness measures.
We describe how genetic algorithms may be applied to experimental design for fMRI, and we use the framework to explore the space of
possible fMRI design parameters, with the goal of providing information about optimal design choices for several types of designs. In our
simulations, we considered three fitness measures: contrast estimation efficiency, hemodynamic response estimation efficiency, and design
counterbalancing. Although there are inherent trade-offs between these three fitness measures, GA optimization can produce designs that
outperform random designs on all three criteria simultaneously.
© 2003 Elsevier Science (USA). All rights reserved.
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Introduction

This article describes a method for optimizing the stim-
ulus sequence in event-related fMRI using a genetic algo-
rithm (GA). We describe how genetic algorithms may be
applied to experimental design for fMRI, and we present
simulations of random and optimized stimulus sequences
over a range of design parameters. Event-related fMRI is a
major advance in methodology because of the flexibility it
allows in experimental design and the specificity with which
particular mental processes may be studied; but the space of
possible design choices for a given study is large and com-
plex, and it is difficult to know which parameter values are
best. The framework for optimization we present here is
general and can be used to maximize statistical and non-
statistical (i.e., psychological validity) properties of fMRI
designs using novel criteria or existing criteria for design

fitness (e.g., Dale, 1999; Friston et al., 1999, 2000a; Josephs
and Henson, 1999; Liu et al., 2001). Previous research on
optimization has considered only a narrow range of possible
parameter values and design types, often excluding factors
such as temporal autocorrelation of fMRI noise, nonlinear-
ity in observed signal, the presence of multiple conditions
and multiple contrasts of interest within a single experi-
ment, experiment-related factors such as psychological
probes that influence the design but are difficult to model,
and factors such as counterbalancing of stimuli and repeated
presentations that influence the psychological validity of the
task. The flexibility of the genetic algorithm as an optimi-
zation tool, combined with novel methods for estimating
signal nonlinearities, allows us to circumvent all of these
limitations. Within the GA framework, researchers can de-
velop experimental designs that are optimal with respect to
the unique characteristics of the research paradigm under
investigation.

Optimization of experimental designs may best be de-
scribed as a search through the space of possible designs,
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with the dimensionality of the space defined by the number
of design parameters allowed to vary. We combine use of
the genetic algorithm with conventional exhaustive search
over subsets of design parameters. A conventional search is
used when the search space is very restricted and exhaustive
search is possible. For example, when choosing an inter-
stimulus interval (ISI), the search proceeds over a single-
parameter dimension, and design fitness is assessed over a
range of ISIs. This type of parameter mapping is feasible
over a low-dimension parameter space (i.e., when trying to
choose one or two design parameters). However, as Dale
(1999) discovered, there is great variability among realiza-
tions of random event-related designs with the same param-
eter values. Optimization of the particular ordering of events
is accomplished with the genetic algorithm, which is effec-
tive at optimizing over very high-dimensional parameter
spaces, and yields a particular pseudorandom sequence of
events with maximum suitability.

Optimization of event sequences promises the greatest
improvement in experimental fMRI design when rapid,
event-related sequences are used. The advantages of rapid
event-related fMRI over blocked fMRI or PET designs have
been discussed at length (Buckner, 1998; Burock et al.,
1998; Dale & Buckner, 1997; D’Esposito et al., 1999;
Friston et al., 1998; Josephs and Henson, 1999; Rosen et al.,
1998). Briefly, one major advantage of event-related de-
signs is that they permit more specific isolation of particular
psychological events than block designs, making psycho-
logical inference easier and making it possible to image a
whole new class of psychological events. Statistically, rapid
designs (typically with ISIs � 4 s) may improve statistical
power by as much as 10:1 over single-trial designs (Dale,
1999). Not only is it possible to estimate the magnitude of
regional activation using rapid designs, it is also possible to
obtain reliable estimates of the time course of activation
with subsecond resolution (Miezin et al., 2000).

However, all these advantages are mitigated by serious
limitations posed by the shape and linearity of the signal
response (e.g., BOLD) in fMRI. The statistical power of
effects in rapid event-related fMRI depends greatly on the
timing parameters, the particular sequence of events chosen,
and how these variables interact with signal nonlinearities,
temporal noise autocorrelation, and psychological factors
relating to the consistency and magnitude of the expected
neural activity across trials.

In this article, we first review previous approaches to
experimental design optimization in fMRI. We then intro-
duce the genetic algorithm and the way in which it is
applied in this context. Under Methods, we describe the
linear systems approach and a modification to account for
nonlinearity. Following that, we describe the measures of
design efficiency and the method for parameterizing an
fMRI model. We then describe measures of psychological
suitability (e.g., counterbalancing). Finally, we describe
four simulations demonstrating the ability of the genetic

algorithm to find optimal designs for various combinations
of statistical and psychological considerations.

Previous approaches to optimization of fMRI designs

Josephs and Henson (1999) were among the first to
examine the relative fitness of fMRI designs in a linear
system. They generated random event sequences with spec-
ified transitional probabilities, performed an exhaustive
search across various ISIs, and examined designs with and
without temporal “jitter” or stochastic variation in event
onset times (Burock et al., 1998; Dale, 1999). Their measure
of fitness was “estimated measurable power” (EMP)—es-
sentially the average squared deviation of a predictor from
its mean.

The use of EMP as a criterion of fitness is a reasonable
choice, as the statistical power of the design increases
monotonically as the energy (EMP) of the predictor in-
creases. However, EMP is limited because it does not take
into account the other major constraint on statistical power:
correlation between predictors in the design matrix.

Dale (1999) provided an alternate measure of design
fitness, termed efficiency. Efficiency is the inverse of the
sum of the variance of parameter estimates (see Methods,
Eq. (7)). Increased variance of parameter estimates reduces
the significance for a given effect size, so maximizing ef-
ficiency is a reasonable endeavor. In fact, in the discipline of
experimental design, maximizing efficiency leads to what
are called A-optimal designs (Atkinson and Donev, 1992).
The essential aspect of efficiency is that it captures col-
linearity of each predictor with the others; if two predictors
are nearly collinear their parameters cannot be estimated
precisely. The variance of the predictor thus contains informa-
tion about both the energy (EMP) of the predictor and its
correlation with other predictors or combinations of predictors.

If a deconvolution approach is used, as it is in Dale’s
(1999) initial simulations, the efficiency reflects the power
in estimating the shape of the hemodynamic response (Dale,
1999; Liu et al., 2001). If a basis set of hemodynamic
response functions (HRFs) is used (Dale, 1999) or a single
assumed HRF (Liu et al., 2001) is used, the efficiency
statistic reflects the detection power of the design or the
ability to correctly estimate the height parameter of each
basis function.

Liu et al. (2001) demonstrated that there is an inherent
trade-off between efficiency of estimating an unknown HRF
shape and detection power of a signal using an assumed
HRF. A single event train cannot maximize both, but pseu-
dorandom designs whose predictors contain both high and
low spectral frequencies (i.e., both blocks and isolated
events) may provide a reasonable ability to estimate both
the shape and the magnitude of the hemodynamic response.
Birn et al. (2002) have explored this result with simulations,
concluding that designs that vary rapidly between condi-
tions (i.e., “rapid ER designs”) are best for HRF estimation,
whereas block designs are best for signal detection.

294 T.D. Wager, T.E. Nichols / NeuroImage 18 (2003) 293–309



However, it may often be desirable to maximize HRF
shape estimation power while retaining power for contrast
detection. In the extreme, contrast detection with no ability
to estimate the HRF (e.g., as in a blocked design) leaves
ambiguity in whether results are related to a specific psy-
chological or physiological event of interest or whether they
are related to other processes that occur proximally in time
(Donaldson et al., 2001). For example, comparing reading
of difficult words to easier words in a blocked design could
lead to differences in overall level and quality of attention
during difficult blocks, as well as in specific processes that
occur each time a difficult word is encountered. Designs
with no HRF shape estimation power confound these types
of effects. Another case where HRF shape estimation is
particularly useful is in estimating differences in HRF delay
onset between events (Miezin et al., 2000) and in cases
where the hypothesis depends on the shape of activation, as
in studies that examine maintenance of information in work-
ing memory over short delay intervals (Cohen et al., 1997).

Friston et al. (1999) gave a formulation for the standard
error of a contrast across parameter estimates for different
predictors, allowing for generalization of efficiency to con-
trasts among psychological conditions. It was subsequently
generalized to account for temporal filtering and autocorre-
lation (see Eq. (10)). This formula easily translates into a
measure of the estimation efficiency of a set of contrasts
(Eq. (11)), which is an important advancement because the
design parameters optimal for estimating a single event type
are very different from those optimal for estimating a dif-
ference between two event types or another contrast across
different conditions (Dale, 1999; Friston et al., 1999; Jo-
sephs and Henson, 1999). Considering that most researchers
in cognitive neuroscience are interested in multiple con-
trasts across conditions within a single study, or at least the
difference between an activation state and a baseline state,
optimization strategies that take advantage of the ability to
estimate efficiency for a set of contrasts are very useful.

Genetic algorithms

Genetic algorithms are a subset of a larger class of
optimization algorithms, called evolutionary algorithms,
which apply evolutionary principles in the search through
high-dimensional problem spaces. Genetic algorithms in
particular code designs or candidate solutions to a problem
as a digital “chromosome”—a vector of numbers in which
each number represents a dimension of the search space and
the value of the number represents the value of that param-
eter (Holland, 1992). Analogous with genes on a biological
chromosome, the elements of a design vector in a genetic
algorithm are parameters specifying how to construct an
object. For example, in aircraft design, three parameters
might be material, curvature of the wing foil, and wing
length. Values in the design vector can be continuous, as
with length, or nominal, as with material. In fMRI design,
the chromosome is a vector of N time bins, and the values

in each slot represent the type of stimulus presented, if any,
at that time. This method allows for temporal jitter at the
temporal resolution of the time bins, with variable numbers
of rest bins following each event of interest creating sto-
chastic temporal variation (e.g., Burock et al., 1998). How-
ever, the resolution specified is arbitrary.

A second common feature of genetic algorithms is that
selection of designs operates on numerical measures of
fitness. Design vectors must be translatable into single num-
bers that represent the suitability of the design. In aircraft
design, an engineer may want to minimize material costs
and fuel consumption and maximize carrying capacity and
maximum safe flying speed. These quantities must be as-
sessed through simulation and collapsed to a single number
that represents the overall suitability of a particular design
specification. In fMRI, researchers may want to simulta-
neously maximize the efficiency of estimation of several
contrasts and the efficiency of estimating the hemodynamic
response for statistical reasons and minimize stimulus pre-
dictability for psychological reasons.

Three processes with analogs in evolutionary theory
drive the operation of genetic algorithms: selection, cross-
over, and point mutation. Genetic algorithms generally start
with a population of randomly generated design vectors, test
the fitness of those vectors, select the best ones, and recom-
bine the parameter values (i.e., exchange some elements) of
the best designs. The designs can then be tested again, and
the process is iterated until some criterion is reached. This
process is analogous to natural selection: Designs are ran-
domly rather than explicitly constructed, but the best de-
signs from each generation are carried over to the next. On
average, combinations of numbers that code for desirable
features tend to spread throughout the population, and the
population evolves through successive generations toward
higher fitness scores.

The process of exchanging elements among successful
designs also has a biological analog, which is referred to as
“crossover.” Although there are many ways to exchange
design elements, one of the simplest is for successful (i.e.,
high-fitness) vectors to be paired together, as biological
chromosomes are, and exchange the half of their parameters
that lies above a randomly selected point along the vector.
The crossover process is illustrated Fig. 1A.

A third process important in genetic algorithms is ran-
dom reassignment of the values of a small number of design
elements to other values, as shown in Fig. 1B. This process
is analogous to point mutation in biology, which refers to
the random mutation of certain components of DNA. The
functional value of this process in the algorithm is to ensure
that the population of designs as a whole remains hetero-
geneous. Crossover relies on heterogeneity in the population;
essentially, the heterogeneity determines how large of a search
space the algorithm covers. While it is unlikely that random
mutations alone will generate high-fitness designs, random
mutation in combination with crossover can be very effective.

Genetic algorithms have been applied over the past 40
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years to a number of areas of science and engineering,
including structural design and statistics, and recently in
biology for protein folding and synthesis of proteins and
drugs (Douguet et al., 2000; Sheridan et al., 2000; Yadgari
et al., 1998). They are particularly suited to problems that
are difficult to solve analytically or by hill-climbing techniques
such as gradient descent methods used in many nonlinear
fitting algorithms and expectation maximization techniques
(Dempster et al., 1977). These problems typically have a large
and complex “fitness landscape”—a mapping of fitness across
incrementally varying parameter values, where each parameter
is a dimension of the landscape. A large search space and

nonmonotonicity of fitness across many dimensions makes
exhaustive search computationally prohibitive and causes hill-
climbing algorithms to get stuck in local optima.

Methods

Linear systems approach

Simulation is carried out in the framework of the general
linear model

Fig. 1. Illustration of crossover (A) and point mutation (B). In crossover, chromosomes in biology or vectors in a genetic algorithm pair up and exchange
pieces at a randomly selected crossover point. In point mutation, certain genes or elements of a vector are randomly given a new value from the available
range of possible values.
Fig. 2. Diagram showing the construction of the design matrix used to test efficiency from design vectors. Design vectors contain all the information
necessary, with design parameters such as high-pass filter length, to reconstruct the design. The design vectors form the “genetic code” of the GA, and the
best of these are intermixed between generations to create novel pseudorandom design vectors that may be yet more optimal than their “parent” vectors.
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Fig. 3. Comparison of actual data for 10 subjects collected at 3 T (A) to predicted response in a linear system (B). Flickering checkerboard stimuli (120 ms) were
presented, and motor responses were collected, once per second in a series of 1, 2, 5, 6, 10, or 11 stimulations, with a 30-s rest interval following the series. Data
in (A) show percentages of signal change in series of each length. Linear predictions (B) were constructed by convolving a canonical HRF, normalized to the
observed response height of a single checkerboard stimulation, convolved with the stimulus delta function for each series. Actual responses to long series peaked
at approximately two times the height of the single stimulation response, whereas the linear convolution predicts responses over five times greater.
Fig. 4. Schematic showing the stages in GA operation. Design vectors are transformed to model matrices, which are tested for fitness. Selected designs
undergo crossover, and the resulting “children” are retested iteratively until the algorithm is stopped.
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Y � X� � �, (1)

where Y is the n vector of data observed at a given voxel, X
is the n-by-k � 1 design matrix whose columns represent
the expected response, � is a (k � 1) vector of coefficients
for the columns of X, and � is a n vector of unobserved
random errors; we make the usual assumption that each �i is
normally distributed with mean zero and variance �2. There
are three typical approaches to finding �̂ (an estimate of �).
The first approach is to assume independent errors and use
the usual least squares estimate, �̂ � (X�X)�1 X�Y. The other
two approaches, prewhitening and precoloring, account for
dependent errors. Let V � Var(�)/�2, the correlation matrix
of the errors. Both prewhitening and precoloring estimates
can be written

�̂ � ��KX��KX��1�KX�� KY, (2)

where K is a n-by-n (de)correlating matrix. In prewhitening,
K is chosen such that KVK� is the identity matrix; in pre-
coloring K is chosen such that KVK� � KK�. The prewhit-
ening approach yields the most efficient estimator of � with
colored noise, but leads to biased estimates of �2 if the
estimate of the noise autocorrelation is inaccurate (Friston et
al., 2000a).

The noise autocorrelation estimates used in our simula-
tions were derived empirically from a visual–motor task in
which subjects were asked to press the thumbs of both
hands on seeing a change in a visual stimulus (Aguirre et al.,
1998), which occurred every 20 s, with images acquired
every 2 s over 20 trials for a total of 200 images per subject.
As in previous approaches to noise estimation (Aguirre et
al., 1997; Friston et al., 2000; Zarahn et al., 1997), we
assumed a stationary noise model. The data were regressed
on the estimated hemodynamic response and its temporal
derivative, to provide a reasonably flexible model that can
account for some variation in response delay, and the resid-
uals were used to calculate the average cross-correlation
across brain voxels for each subject, giving a 50-point
estimation of the autocorrelation (Box et al., 1994), which
were then averaged across seven subjects to give an auto-
correlation estimate specific for our imaging environment.
Although we judged this to be an adequate autocorrelation
model, use of the GA framework does not depend in any
way on this particular estimation method; any method
judged sufficiently accurate is acceptable.

Accounting for nonlinearity

The general linear model assumes that the response to
each event is independent of and sums linearly with re-
sponses to other events. Several studies have demonstrated
that nonlinear interactions in fMRI do occur (Birn et al.,
2001; Friston et al., 2000; Janz et al., 2001; Vazquez and
Noll, 1998), with the principal nonlinear effect being a
saturation of fMRI signal when events are repeated less than
2 s apart. That is, the hemodynamic response to a second

event is less than to the first, and the estimated response
height decreases still more for subsequent occurrences of
the event. Boynton et al. (1996), although they report linear
BOLD responses with respect to stimulus duration, found
saturation effects in response magnitude. Other labs have
found nonlinear saturation with stimulus presentation rate
(Berns et al., 1999; Binder et al., 1994), consistent with the
idea that closely spaced events produce signal saturation.
An alternative way of conceptualizing the effect we term
“saturation” is to say that the fMRI response to initial, brief
events is greater than the value expected under linearity.
The difference between these two conceptualizations
amounts to a difference in the reference function (an im-
pulse response for the saturation account and a block of
stimuli for the alternative account); the same underlying
phenomenon is described by both accounts. This effect is
relatively small at long ISIs, but can have a substantial
impact on designs with ISIs less than 4 s. Simulation with
ISIs of less than 1 s may be completely untenable without a
model of signal saturation. In previous simulations, design
efficiency increases without bound as the ISI becomes very
short (Dale, 1999; Friston et al., 1999; Josephs and Henson,
1999). In effect, discrete linear convolution, which is typi-
cally used to construct predicted responses, becomes mean-
ingless at short ISIs. With continuous stimulation dis-
cretized at ISI s, the predicted response magnitude
approaches infinity as ISI approaches zero, whereas the
actual response magnitude is invariant with respect to the
sampling resolution of the indicator function (i.e., the stim-
ulus onset times).

In a block design with task and control periods of equal
length and number of stimuli, this effect is not a problem. In
continuous-stimulation block design models, where the ISI
is assumed to be zero, scaling of the predictors depends on
the actual sampling resolution at which the design is con-
structed. This resolution is often at least equal to the repe-
tition time (TR) of volume acquisitions. Sampling at differ-
ent TRs results in an equivalent scale change in the response
estimates and standard errors, leaving the resulting test
statistic invariant to sampling rate. However, when block
design predictors (or repeated, closely spaced events) are
mixed with individual events (for an example, see Liu et al.,
2001, Fig. 4), the situation becomes problematic: the scaling
of the block portion of the predictor relative to the individ-
ual events is arbitrary, depending on the TR, and linear
convolution can yield very poor predictions of the signal
response.

To give some measure of design efficiency at short ISIs,
some measure of signal saturation is necessary. If the
amount of saturation at a given ISI is known, the model
matrix X can be adjusted accordingly, and simulation can
proceed. Our approach here is empirically based. In a recent
study (T.D. Wager et al., manuscript in preparation), we
compared trains of 1, 2, 5, 6, 10, and 11 visual stimuli
(reversing-contrast checkerboards) and motor responses
spaced 1 s apart. We observed that the peak magnitude for
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trains of 5, 6, 10, and 11 stimuli were approximately equal,
indicating that it is difficult to increase activity above this
level, as shown in Fig. 3. The peak value was about twice
the magnitude of the response to a single brief impulse.

In our simulations, we modified the linear convolution by
adding a “squashing function” that replaced values greater
than 2	 the impulse response with the 2	 value. Thus, the
predicted response sums linearly up to twice the impulse
response height, at which it is completely saturated. While
nonlinear effects are clearly more complicated than the
squashing model suggests and more accurate models of
nonlinearity are needed, we adopt this as an interim solution
because it is easily computed and captures the basic idea of
signal saturation. Again, the GA framework can accommo-
date any model of nonlinear BOLD response.

Measures of design efficiency

The principal measure of uncertainty in estimation is the
variance–covariance matrix of �̂. When the data are inde-
pendent, this is

Var��̂� � �2�X�X��1. (3)

Thus, the uncertainty in the estimates depends on the prop-
erties of the design matrix and the noise variance �2. When
the data are dependent and (de)correlated with matrix K, we
have

Var��̂� � �2�Z�Z��1Z�KVK�Z�Z�Z��1, (4)

where Z � KX, the filtered design matrix (Friston et al.,
1999, 2000a). If we are interested in b contrasts contained in
a b 	 k � 1 matrix C, we focus on the variance of C�̂.

Assuming unit variance and substituting the pseudoin-
verse of Z for (Z�Z)�1 Z� (Graybill, 1976, p. 28), we have

Var�C�̂� � CZ�KVK��Z���C�. (5)

Design efficiency is the reciprocal of an arbitrary combina-
tion of the diagonals of Var(C�̂). Use of the trace corre-
sponds to equally weighting each contrast of interest. We
use a weighting vector w of length b whose weights repre-
sent the importance of each contrast for the overall aim of
the study. The overall measure of design efficiency is

� � 1/trace
diag�w�Var�C�̂��, (6)

where diag(w) is a diagonal matrix comprised of the ele-
ments of w. Several special cases are worth considering. If
X consists of a deconvolution matrix (Glover, 1999; Hin-
richs et al., 2000; Menon et al., 1998), and C is the identity

matrix, Eq. (7) gives the estimation efficiency for the shape
of the HRF (Liu et al., 2001). If C is instead replaced by a
basis set of canonical HRF vectors, then the expression
evaluates the efficiency of estimating the basis set (Dale,
1999). In our simulations, we use � to measure efficiency of
both a set of contrasts and the HRF deconvolution model for
all trial types.

Parameterizing a model

The genetic algorithm works by interchanging pieces of
design vectors that represent the stimulation sequence dur-
ing scanning. The fitness metric, however, is derived from
the filtered design matrix Z associated with the stimulation
sequence. It is important, therefore, to parameterize the
design matrix as accurately as possible, including data fil-
tering and analysis choices (see Fig. 2).

In our parameterization of design matrices, the design
vector contains one element per ISI, and the value of each
element is an integer representing the stimulation condition
at that time during the experiment, with 0 for rest and 1 . . .
k arbitrarily assigned to conditions. For example, the integer
1 in the 5th element of the design vector might represent a
visual stimulation presented at the onset of the 5th acquisi-
tion, and 2 in the 10th element might represent auditory
stimulation during the 10th acquisition.

Each design vector is transformed into a high-resolution
design matrix whose columns are the indicator functions for
the event onsets of each trial type sampled at a high time
resolution (we used 100 ms) and convolved with a canonical
hemodynamic response function (SPM99, http://www.fil.
ion.ucl.ac.uk/spm). The design matrix is resampled at the
TR, yielding the model matrix X. If a whitening approach is
used, the model matrix is decorrelated as per K. If a coloring
approach is used the model matrix may then be correlated
via high- and/or low-pass filtering, yielding the filtered
model matrix Z. Filtering is optional and depend on the
projected analysis strategy for the study; in general, the
simulation is most accurate when the design matrix is
treated exactly like the design matrix of the actual analysis.

Psychological restriction of search space

The search through possible designs may be constrained
according to a number of psychological factors, including
restrictions on repetition of stimuli and transitional proba-
bilities, or counterbalancing, among trial types. In the GA
framework, psychological considerations are decided upon
by the experimenter and implemented as either hard or soft

Fig. 5. Efficiency plots (linear model) over ISI and temporal jitter, created by inserting a number of rest intervals at random locations into the design, for
Simulation 1. The length of the simulated scan was kept constant at 480 s, and the efficiency of a difference between two event types (a [1-1] contrast) was
estimated for each combination of ISI and proportion of rest intervals. (A) Results assuming linear additivity of the HRF response. Efficiency approaches
infinity at short ISIs because the signal response can sum without bound. (B) Line plots of efficiency as a function of ISI under the linear model for selected
proportions of rest intervals, 1, 41, and 81%.
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Fig. 6. Efficiency plots (nonlinear model) for Simulation 1, assuming a saturation threshold of 2	 the impulse response. (A) Efficiency map over ISI and temporal
jitter. The map suggests that the optimal ISI for difference detection is �2 s, or 4 s on average between repetitions of the same event type. A greater degree of
saturation than modeled would shift the peak of the curve to the right, toward longer ISIs. While the nonlinearity model is simplistic and may overestimate the amount
of signal nonlinearity, it provides a starting point for obtaining reasonable estimates at all ISIs. (B) Line plots of selected levels of rest intervals for the saturation
model, 1, 41, and 81%. Higher efficiencies are produced with additional randomly placed rest intervals only at ISIs less than 1.5 s.



constraints. Hard constraints are implemented by excluding
design vectors that do not meet specified criteria from fur-
ther consideration. Soft constraints are implemented by tak-
ing a weighted sum across scores on all fitness measures of
interest to yield a single overall fitness score, which is then
used as the criterion for selection.

Acceptable limits on stimulus repetition may vary de-
pending on the psychological nature of the task. In our GA
simulations, we excluded design vectors that contained
more than six of the same trial type in a row anywhere in the
series.

Counterbalancing of stimuli assures that the event se-
quence is not predictable to participants. In a perfectly
counterbalanced design, the probability of each event type is
independent of the event history. For counterbalancing to
the first order, we consider the joint probability of trial type
j following trial type i, which is

pij � pipj, (7)

where i and j index trial type, from 1 to k, and pi and pj are
the base rates for each trial type. If all events occur at equal
rates, then pij � 1/k2, and in a counterbalanced design each
event type follows each other one equally often. The ex-
pected number of trials of type j following type i is

E�Nij� � apij, (8)

where a is the number of stimulus presentations. In matrix
notation,

E�N� � app�, (9)

where p � {p1 . . . pk} is a column vector of base rates. The
formula can be generalized to counterbalancing up to the rth
order. In an rth order counterbalanced design, we consider
the joint probability of trial type j on the current trial and
trial type i at lag r, E(Nijr). Thus the overall expected values
given an rth order counterbalanced design can be repre-
sented by a k 	 k 	 r three-way array E(N). In practice, the
expected number of stimulus presentations per condition at
each time lag r is the same, so E(N..r) contains the same
values for all r.

Given the expected number of trials for each combina-
tion of stimulus presentation orders, it is simple to compute
the deviation of any design vector from perfect counterbal-
ancing. The k 	 k 	 r array N, which represents the number
of observed occurrences of event pair i, j with time lag r, is
compared to the expected array E(N) by taking the average
sum of squared differences between the two arrays. This
yields an overall counterbalancing score f with a lower
bound of 0 indicating perfect counterbalancing. The asso-
ciated fitness measure � � 1 � f (so that higher values
signify greater fitness) can be used to compare design vec-
tors with one another and can be computed using

� � 1 �
1

IJR
�ijr�Nijr � E�Nijr��

2 (10)

While designs with large � have good overall counterbal-
ancing, we are also concerned with the worst-case counter-
balancing for any given trial type. Hence we may impose a
hard constraint by eliminating any designs for which max


�Nijr � E�Nijr��
2� exceeds 10% of the expected number of

stimuli E(Nijr).
We also need to constrain the degree to which a design

vector contains the desired frequencies of each trial type.
This quantification is necessary because the recombination
of design vectors in the GA does not strictly maintain the
input frequencies for all design vectors. We define

	 � 1 � max�g � ab�, (11)

where g is a k-length vector containing the number of
observed events in each condition.

Search methods: exhaustive search and genetic algorithm

As the optimization of trial structure is a search through
parameter space, the search algorithm used should depend
on the size and complexity of the search space and the
fitness landscape or the mapping of design fitness onto
search parameters. Small search spaces can be mapped
using exhaustive search, in which every combination of
parameters (or a set covering the space with reasonable
thoroughness) is tested, and the ultimate design is selected
by using the design with the highest estimated fitness. As an
example, we chose to estimate the optimal ISI and temporal
jitter (introduced by inserting a random number of rest
intervals into an event-related design; Burock et al., 1998)
by generating random designs at a range of simulations and
testing their fitness using the detection power measure de-
scribed above. The results of these tests are reported in
Simulation 1.

We used the GA to choose the optimal ordering given
a selected ISI and number of rest intervals. The starting
point for the GA was a population of design vectors created
with the desired number of events in each condition in
random order. Design matrices were constructed for each
design vector, and fitness measures to be limited by hard
constraint (including �, 	, and maximum number of re-
peated events, depending on the simulation) were estimated
for each.

Each fitness measure was standardized by the population
mean and standard deviation; this makes the metrics com-
parable and gives more weight to measures with small
variability. A linear combination of these standardized mea-
sures that defines the overall fitness measure

F � w��̃ � w��̃ � w		̃, (12)

where �̃, �̃, and 	̃ are the standardized efficiency, counter-
balancing, and condition frequency measures, respectively,
and w�, w�, and w	 are their weights.

The fitness measure is transformed with a sigmoid (cho-
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sen arbitrarily to implement a soft cutoff in fitness scores)
and combined with a uniform(0,1) variate:

Ft � rand0,1� � 1/�1 � e�
F�, (13)

where Ft is the transformed fitness score, and 
 is a
constant representing selection pressure or the degree of
“softness” in the selection process. Design vectors with
Ft above the median were selected for crossover. “Selec-
tion pressure” in this context is the probability of select-
ing a design with F � F� . The case 
 � 0 produces
random selection (all Ft are equal), and 
 3 � produces
a step function where all designs with above-median Ft

also have above-median F. The best value for 
 was
determined to be 2.1, found by systematically varying the
parameter value and observing the GA’s performance;
specifically, the GA produced designs of highest fitness
per iteration in our simulations with this value of 
. Use
of random noise with the sigmoid transform allowed for
some random variation in which designs were selected,
preserving population variability. This principle of pro-
moting diversity is important for systems that rely on
natural or stochastic variation to produce optimal de-
signs, and we found it to be helpful here.

Selected design vectors are paired at random and crossed
over at a single randomly selected point until the population
limit is reached. The portion of the vectors that lies above
the crossover point is exchanged, so that the new design
vectors consist of pieces of two “parent” vectors. After
crossover, as in biology, a small percentage (we chose
0.1%) of the values across all lists are subject to random
mutation, in which two vector elements are randomly inter-
changed. This process can provide additional leverage for
selection, but its main function is to maintain variability in
the population and prevent the system from getting “stuck”
in a suboptimal solution.

Another concern is the population becoming too
homogeneous. So another step taken is to introduce
randomness if all lists are too correlated. Specifically, if
the average correlation between lists rises above 0.6, 10%
of the event codes of each design are replaced with
random event codes. The event codes to be replaced are
randomly selected for each design, and the best design is
left intact.

To preserve the integrity of the most optimal design thus
far, a separate copy is made of this design and inserted into
the population without crossover or mutation. The popula-
tion of new design vectors is then reevaluated for fitness,
and the process of evaluation, selection, and crossover con-
tinues iteratively until a specified number of generations is
reached, as shown in Fig. 4. An alternate strategy to using
a fixed number of generations is to monitor convergence by
plotting Ft (e.g., see Fig. 9) and exiting the algorithm when
the system does not improve in a specified number of
generations.

Simulations

Simulation 1
This simulation demonstrates exhaustive search over

ISIs and jitter. This simulation was designed to maximize
detection efficiency for a [1 �1] contrast across two equally
probable conditions and generate an efficiency surface ex-
ploring the ISI by trial density space. No filtering was used,
and V determined from local data was used for this and all
other simulations, except where otherwise noted. The effi-
ciency of 100 random event sequences at each combination
of ISI and jitter was estimated, and their mean efficiency
was used as the population reference. ISI ranged from 0.1 to
16 s, in increments of 0.1, and jitter ranged from 1% of the
total stimulation periods being rest intervals to 81% rest
intervals. The TR was 2 s, with 240 acquisitions; these
parameters were used for all simulations. Separate simula-
tions were run with and without nonlinear saturation.

Simulation 2
Previous researchers have suggested that block designs

are more efficient at detecting differences between condi-
tions than event-related ones (Dale, 1999). This simulation
examines this assertion by using the GA to optimize the
efficiency for a [1 �1] contrast across two equally probable
conditions with no intrinsic autocorrelation model (i.e., in-
dependent noise), no filtering, and no psychological con-
straints. In this situation, the GA should converge on a block
design. We explored this prediction further by rerunning
the simulation with a highly autocorrelated noise model.
The noise model was created with the autocorrelation func-
tion 1/(t/14 � 1), where t is time in seconds, chosen to
resemble typical highly autocorrelated data from our scan-
ner (see Fig. 8C). We reasoned that increased scanner noise
at low frequencies should push the optimal design into
higher frequencies so that it overlaps less with the noise.
For both of these simulations, TR and ISI were fixed at 2 s
and no nonlinear saturation was used. Generation size was
500.

Simulation 3
This simulation was designed to test the ability of the GA

to optimize multiple efficiency measures simultaneously
and to compare GA optimization versus random search
through design space. The GA was set to optimize detection
efficiency for a single predictor, with half of the events
being the condition of interest and half being rest. The TR
was 2 s and the ISI was 2 s. An identical simulation was
performed using random search instead of the GA. Rather
than subjecting design vectors to crossover, the random
search algorithm simply rerandomized the event order in the
population of design vectors and tested their fitness, saving
the best vector at each iteration. The algorithm returned the
best single design vector tested. Both simulations were run
for equal time, each examining approximately 13,000 de-
signs (45 generations for the GA). Generation size was 300.
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In a second set of simulations, we used random and GA
search algorithms, with the same parameters, to optimize
both contrast and HRF estimation efficiency simulta-
neously. If there is latitude to partially circumvent the in-
herent trade-off between contrast estimation and HRF esti-
mation, the GA may produce designs that are superior to
randomized designs on both efficiency measures.

Simulation 4
The purpose of this simulation was to test the ability of

the GA to simultaneously optimize multiple constraints
across a range of ISIs for more than two conditions. We
simulated rapid event-related designs with four condi-
tions at an ISI of 1 s and compared the performance of the

GA after 1128 generations of 300 event lists each (10 h
of optimization) with groups of 1000 random designs at
ISIs ranging from 0.4 to 8 s. The GA optimized (1)
efficiency for a [1 1-1-1] contrast across the trial types,
(2) HRF estimation efficiency across the trial types, (3)
counterbalancing of all trial types up to third order, (4) 1
and 2, or (5) 1–3. Rest periods were included and main-
taining the input frequencies of each condition was not
specified as a priority (w	 � 0), so the GA could select
the number of rest periods in the optimal design; the
average time between trials of each type could vary, with
a lower limit of � 4 s. This constraint was implicit in
construction of the simulation with 1 s ISI and four trial
types of interest.

Fig. 7. Optimized predictors for the difference detection. The top panel shows condition A, and the bottom, condition B. Black lines indicate stimulus
onsets.
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Fig. 8. (A) Spectral density plots of the optimized model (blue line) and the canonical SPM99 HRF (red line). (B) The same spectral profiles for a optimized
model assuming high noise autocorrelation, with the autocorrelation function shown in (C). The frequency of block alternations in the evolved model
increases under high noise autocorrelation, moving the power spectrum of the signal out of the range of the noise.
Fig. 10. Comparison of genetic algorithm (GA) with optimization by random search over a 10-min search period. (A) When viewing performance as measured by
detection efficiency, the greater slope of the GA line indicates the superior performance of GA search. Both search sequences considered the same number of lists,
about 13,000. Although inferior to the GA’s performance, random search presents a large advantage over using a randomly generated design. The range of efficiency
for 1000 random designs with the same parameter settings was 63.05–142.37. (B) Plots of hemodynamic response (HRF) detection efficiency for the same
optimization period. Optimizing detection efficiency decreased HRF estimation efficiency in proportion to the gains seen in (A). HRF estimation efficiency of 1000
random designs had a range of 44.54–58.50. (C) It is possible to simultaneously optimize both detection and HRF estimation efficiency, at a cost to both.
Simultaneous optimization using random search and GA search over a 10-min (�45-cycle) optimization period are shown. The GA performs better on both efficiency
measures. The lines do not progress smoothly because efficiency on one measure can be sacrificed for efficiency on the other.



Computation times

Several metrics might be used to measure gains in effi-
ciency using GA or other search algorithms. One might
choose to track efficiency as a function of number of cycles
(generations), number of models tested, or computation
time. We present simulations here in terms of computation
time, annotated with description of the number of cycles.
Although computation time depends on the speed of the
computer system, for a given system, run time is the most
direct way to compare different search parameters and al-
gorithms, and how much time it takes to achieve a certain
result is in some sense the “bottom line” in choosing a way
to search. The number of models tested and the number of
cycles depend on the particulars of the simulation and are
not comparable across different simulations even on the
same computer.

For comparability, all simulations were run on a Pentium
III 700-MHz computer with 128 Mb of RAM. In 10 min of
search time with a generation size of 300 designs, the GA
could complete approximately 45 cycles totaling �13,000
designs tested. These numbers also depend on the length of
the designs and the complexity of the filtering and autocor-
relation options, but where we compare simulation times,
these variables are held constant.

Results and discussion

Simulation 1

The surface maps in Figs. 5 and 6 show efficiency as a
function of ISI and trial density assuming signal response
linearity (Fig. 5A and B) and assuming a simple nonlinear

squashing of the signal response at 2	 the impulse response
(Fig. 6A and B). Results assuming linearity essentially rep-
licate the findings of Josephs and Henson (1999, Fig. 2).
Efficiency increases exponentially as ISI approaches zero,
with dramatic increases at ISIs of less than 0.7 s. This result
occurs because the signal is allowed to sum linearly without
bound, and at short ISIs the signal magnitude approaches
infinity.

Simulation assuming nonlinear saturation provides more
reasonable estimates, although the nonlinearity model is
only a rough approximation. With no rest periods, these
results suggest that an optimal ISI is around 2.2 s, giving an
average time between trials of the same type of 4.4 s. In this
case, the random ordering of the trials provides the neces-
sary temporal jitter, and additional rest intervals decrease
power. However, at short ISIs (2 s or less), it becomes
advantageous to insert rest intervals (Fig. 6), as the signal
begins to saturate at these ISIs.

With greater degrees of nonlinearity, the optimal ISI
grows longer. In a parallel simulation (not shown), we
found that using a saturation value of 1.6	 resulted in an
optimal ISI of 3 s or an average of 6 s between trials of the
same type. Accurate models of signal nonlinearity will
allow researchers to make better estimates of optimal pa-
rameter choices.

These results are for detecting differences between two
conditions. If the goal is to estimate the shape of the hemo-
dynamic response, or detect other contrasts, a different
efficiency surface would be expected. The strength of this
approach is that one can generate an efficiency surface specific
to the aims and design requirements of a particular study,
taking into account a specific autocorrelation model, filtering
options, contrasts of interest, psychological design constraints,
and estimation strategy. Once a particular combination of
parameters is chosen from the efficiency surface, the GA
can be used to further optimize the particular trial ordering.

Simulation 2

Results show that as expected, the GA converged on a
block design (Fig. 7) and that the peak of the power spec-
trum closely matched the peak of the power spectrum of the
HRF (Fig. 8A). The peak power of the optimized design
was at 0.025 Hz or 40.0 s periodicity, slightly lower in
frequency than the HRF, with a second peak just above the
peak frequency of the HRF. The peak power of the HRF
occurred at 0.032 Hz or 31.5 s periodicity. With a high-
autocorrelation noise model (Fig. 8C), corresponding to the
increased low-frequency drift, we found that the solution of
the GA was a block design with a higher frequency of
alternation. Fig. 8B shows that the power spectrum for the
design peaks at mod: 0.046 Hz, 21.8 s periodicity, substan-
tially higher in frequency than the HRF power peak. Based
on these results, the optimal design for detecting a differ-
ence between two conditions depends on the noise autocor-
relation in the scanner. In particular, higher autocorrelation

Fig. 9. The figure shows the time course of optimization for Simulation 2b.
The GA converges on a block design in approximately 1 h or 2500 cycles
with 300 models per cycle.
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calls for higher-frequency designs. As Fig. 9 shows, the GA
converged on the block design in approximately 250 gen-
erations.

Simulation 3

Fig. 10A shows detection efficiency over the search time
for the GA and the random search algorithm. The GA
produced much greater gains in efficiency with more itera-
tions, indicating that it outperformed the random search
algorithm. The random search algorithm was also somewhat
effective; the range of efficiency for 1000 random designs
was 63.05 to 142.37, with the best design substantially less
efficient than produced by either GA search. However, as
shown in Fig. 10B, optimizing detection efficiency comes at
an inherent cost in HRF estimation efficiency, as predicted
by Liu et al. (2001). In the GA simulation, HRF estimation
efficiency is below the range of HRF estimation efficiency
scores for random designs (efficiency ranges from 44.54 to
58.50 for 1000 random designs), indicating that the gains in
contrast estimation power with the GA optimization came at
the cost of decreases in HRF estimation efficiency.

An important additional question is whether the GA
could optimize both detection efficiency and HRF estima-
tion efficiency simultaneously. The results of a simulation

using both GA and random search methods are shown in
Fig. 10C. With GA search, contrast efficiency improves
substantially within 2 min (less than 10 generations), and
the HRF estimation efficiency improves somewhat more
slowly. The GA substantially outperforms random search
on both measures. These results indicate that it is possible to
achieve a reasonable balance between detection and HRF
estimation ability. Although the optimized design is much
more efficient than random event permutations on both
measures, it is inferior to optimizing a single measure.

Simulation 4

The purpose of this simulation was to test the ability of
the GA to simultaneously optimize multiple constraints (�̃,
�̃, and 	̃) at a range of input ISIs. In Fig. 11, we express the
results of both random simulations at a range of ISIs and the
optimized designs in terms of fitness as a function of the
average time between repeated events of the same type.

The results show that a short ISI—1 s, with � 4 s
between same-type events—produces the best contrast ef-
ficiency in random designs, with a slightly longer optimal
time between repetitions (�6 s) for HRF estimation effi-
ciency. The results suggest that a compromise at �5 s
between trials of the same type will produce the best simul-

Fig. 11. Simulation 4: Optimized and block designs (black dots) compared to the mean of 1000 random sequences (black lines) on three fitness measures:
(A) contrast detection efficiency (eff), (B) HRF estimation efficiency (hrf), and (C) counterbalancing (cbal). 95% confidence intervals for individual random
designs at each value on the abscissa are indicated by dashed black lines. Optimizing for a particular fitness measure produces significant costs in other fitness
measures. Optimizing for multiple measures produced designs that were well above random designs on all optimized measures, but not as good as is possible
with selective optimization.
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taneous optimization of contrast and HRF efficiency, as
indicated by the line peaks in Fig. 11A (contrast efficency)
and Fig. 10B (HRF efficiency), at a small cost in counter-
balancing (Fig. 11C). These results are in good agreement
with similar models from other simulations (e.g., Birn et al.,
2002, Fig. 2). Simultaneous optimization of contrast and
HRF efficiency produced a design that was substantially
better than random designs on both measures, as shown in
Table 1, but was inferior to single-criterion optimization,
1:2.00 for contrast and 1:1.33 for HRF estimation. Optimi-
zation of all three fitness criteria still produced a design that
was better than random designs on all three measures (Fig.
11, Table 1). This result indicates that although there are
trade-offs between measures of fitness, those trade-offs are
not absolute. The importance of any of the fitness criteria
depends on the particular goals of the study.

Extensions of the GA framework

One advantage of the GA framework is that it allows for
estimation of design fitness with any arbitrary design. Ex-
perimenters are not limited to modeling simple one-or two-
condition designs; the choice of autocorrelation models,
HRF types, and design types is arbitrary. In our lab, we have
used the GA framework to develop and test mixed block/
event-related designs, designs in which the stimulation is an
extended epoch rather than a brief event, designs in which
the conditions of interest involve dependencies among trials
(e.g., task switching experiments, in which the events of
interest involve changes between processing different types
of stimuli, rather than the occurrence of any particular
stimulus), self-paced designs, and experiments with probe
and instruction periods inserted into the stimulus sequence,
which change the spectral characteristics of the design.
Although the possibilities are nearly limitless, the principle
remains the same throughout these modifications: parame-

terize your model, choose relevant fitness measures, and let
the GA find an exceptional model.

Conclusions

Based on our simulations, it appears that it is difficult to
simultaneously optimize the ability to detect a response, the
ability to estimate the shape of the response, and counter-
balance the ordering of events in a stimulus sequence. How-
ever, GA optimization produces designs that are much more
effective by all of these criteria than random ordering of the
event sequence. In addition, the GA framework produces
more effective results than random search through the space
of possible event orderings.

For our assumed model of the HRF and signal nonlin-
earity, these simulations suggest that the optimal design for
detecting main effects or differences is a block design with
21–40 s periodicity, depending on the amount of noise
autocorrelation, which produced approximately a 6:1 power
advantage over randomized event-related designs in our
simulations of difference detection across four conditions
[A � B � (C � D)]. Given no other constraints, the GA
framework rapidly converges to this design. For random
designs, the best choice of ISI for both contrast detection
and HRF estimation is one that produces trials of the same
condition that are an average of 5 s apart (i.e., a 2.5-s ISI
with two trial types or a 1.25-s ISI with four trial types). As
nonlinear saturation of the signal response increases, the
optimal ISI increases as well. Temporal jitter is recom-
mended if the design involves only a single event type, if
only main effects are of interest, or if the ISI is less than 2 s
(for two-condition designs). However, use of an optimized,
pseudorandom trial order can improve on random designs
even at the optimal ISI.

Optimization of fMRI trial design is a difficult problem,
with a number of considerations that depend jointly on the
characteristics of fMRI signals, the characteristics of the
brain response elicited, and the psychological goals of the
study. Because of the great variation in types of design and
study goals, it is difficult to come up with a simple set of
rules that will produce the optimal design in all situations.
The GA takes a step toward solving this problem by allow-
ing researchers to specify designs with great flexibility,
potentially capturing many of the idiosyncrasies of a study
and optimizing the statistical and nonstatistical properties of
the design with respect to the particular concerns of the
study.

Acknowledgments

Thank you to Doug Noll, Rick Riolo, John Jonides, Ed
Smith, Rick Bryck, Steve Lacey, and Ching-Yune Sylvester
for helpful discussions on this material. This work was
supported in part by a National Science Foundation Grad-

Table 1
Ratio (%) of efficiencies for selected designs compared
to random designsa

Optimization type Fitness measure

Contrast eff. HRF est. Counterbalancing

Block design 657 13 95.7
Contrast efficiency 577 70 96.5
HRF estimation eff. 80 136 99.2
Counterbalancing 107 79 102.2
Contrast � HRF 289 120 99.5
Contrast � HRF �

counterbalancing
217 119 101.2

a Percentage scores are calculated as the fitness of the optimized (or
block) design divided by the average fitness of 100 random designs at the
optimal parameters for that fitness measure, multiplied by 100. Scores over
100 indicate an advantage over the best random design possible without
search over particular random sequences. Scores less than 100 indicate
significantly lower fitness than the expected fitness for the best random
designs. The block design was constructed at 32 s periodicity.

308 T.D. Wager, T.E. Nichols / NeuroImage 18 (2003) 293–309



uate Research Fellowship to T.D.W. and by a National
Institute of Mental Health grant to John Jonides.

References

Aguirre, G.K., Zarahn, E., D’Esposito, M., 1997. Empirical analyses of
BOLD fMRI statistics. II. Spatially smoothed data collected under
null-hypothesis and experimental conditions. NeuroImage 5 (3), 199–
212.

Aguirre, G.K., Zarahn, E., D’Esposito, M., 1998. The variability of human,
BOLD hemodynamic responses. NeuroImage 8 (4), 360–369.

Atkinson, G.L., Donev, A.N., 1992. Optimum Experimental Designs. Clar-
endon Press, Oxford.

Berns, G.S., Song, A.W., Mao, H., 1999. Continuous functional magnetic
resonance imaging reveals dynamic nonlinearities of “dose-response”
curves for finger opposition. J. Neurosci 19 (14), RC17.

Binder, J.R., Rao, S.M., Hammeke, T.A., Frost, J.A., Bandettini, P.A.,
Hyde, J.S., 1994. Effects of stimulus rate on signal response during
functional magnetic resonance imaging of auditory cortex. Brain Res.
Cogn. Brain Res 2 (1), 31–38.

Birn, R.M., Cox, R.W., Bandettini, P.A., 2002. Detection versus estimation
in event-related fMRI: choosing the optimal stimulus timing. Neuro-
Image 15 (1), 252–264.

Birn, R.M., Saad, Z.S., Bandettini, P.A., 2001. Spatial heterogeneity of the
nonlinear dynamics in the fmri bold response. NeuroImage 14 (4),
817–826.

Boynton, G.M., Engel, S.A., Glover, G.H., Heeger, D.J., 1996. Linear
systems analysis of functional magnetic resonance imaging in human
VI. J. Neurosci 16 (13), 4207–4221.

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., 1994. Time Series Analysis:
Forecasting and Control, third ed. Prentice Hall, Englewood Cliffs, NJ.

Buckner, R.L., 1998. Event-related fMRI and the hemodynamic response.
Hum. Brain Mapp 6 (5–6), 373–377.

Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R., Dale, A.M.,
1998. Randomized event-related experimental designs allow for ex-
tremely rapid presentation rates using functional MRI. NeuroReport 9
(16), 3735–3739.

Cohen, J.D., Perlstein, W.M., Brower, T.S., Nystrom, L.E., Noll, D.C.,
Jonides, J., Smith, E.E., 1997. Temporal dynamics of brain activation
during a working memory task. Nature 386 (6225), 604–608.

Dale, A.M., 1998. Optimal experimental design for event-related fMRI.
Hum. Brain Mapp 8 (2–3), 109–114.

Dale, A.M., Buckner, R.L., 1997. Selective averaging of rapidly presented
individual trials using fMRI. Hum. Brain Mapp 5, 329–340.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood
from incomplete data via the EM algorithm. J.R. Stat. Soc. Ser. B
Method. 39, 1–22.

D’Esposito, M., Zarahn, E., Aguirre, G.K., 1999. Event-related functional
MRI: implications for cognitive psychology. Psychol. Bull. 125 (1),
155–164.

Donaldson, D.I., Petersen, S.E., Ollinger, J.M., Buckner, R.L., 2001. Dis-
sociating state and item components of recognition memory using
fMRI. NeuroImage 13 (1), 129–142.

Douguet, D., Thoreau, E., Grassy, G., 2000. A genetic algorithm for the
automated generation of small organic molecules: drug design using an
evolutionary algorithm. J. Comput. Aid. Mol. Des. 14 (5), 449–466.

Friston, K.J., Josephs, O., Rees, G., Turner, R., 1998. Nonlinear event-
related responses in fMRI. Magn. Reson. Med. 39 (1), 41–52.

Friston, K.J., Josephs, O., Zarahn, E., Holmes, A.P., Rouquette, S., Poline,
J., 2000a. To smooth or not to smooth? Bias and efficiency in fMRI
time-series analysis. NeuroImage 12 (2), 196–208.

Friston, K.J., Mechelli, A., Turner, R., Price, C.J., 2000b. Nonlinear re-
sponses in fMRI: the Balloon model, Volterra kernels, and other he-
modynamics. NeuroImage 12 (4), 466–477.

Friston, K.J., Zarahn, E., Josephs, O., Henson, R.N., Dale, A.M., 1999.
Stochastic designs in event-related fMRI. NeuroImage 10 (5), 607–
619.

Glover, G.H., 1999. Deconvolution of Impulse response in event-related
BOLD fMRI. NeuroImage 9, 416–429.

Graybill, F.A., 1976. Theory and Application of the Linear Model. Dux-
bury Press, Belmont, CA.

Hinrichs, H., Scholz, M., Tempelmann, C., Woldorff, M.G., Dale, A.M.,
Heinze, H.J., 2000. Deconvolution of event-related fMRI responses in
fast-rate experimental designs: tracking amplitude variations. J. Cogn.
Neurosci. 2 (Suppl 2), 76–89.

Holland, J.H., 1992. Genetic algorithms. Sci. Am. 267 (1), 66–72.
Janz, C., Heinrich, S.P., Kornmayer, J., Bach, M., Hennig, J., 2001.

Coupling of neural activity and BOLD fMRI response: new insights by
combination of fMRI and VEP experiments in transition from single
events to continuous stimulation. Magn. Reson. Med. 46 (3), 482–486.

Josephs, O., Henson, R.N., 1999. Event-related functional magnetic reso-
nance imaging: modelling, inference and optimization. Phil. Trans. R.
Soc. Lond. B Biol. Sci. 354 (1387), 1215–1228.

Liu, T.T., Frank, L.R., Wong, E.C., Buxton, R.B., 2001. Detection power,
estimation efficiency, and predictability in event-related fMRI. Neuro-
Image 13 (4), 759–773.

Menon, R.S., Luknowski, D.C., Gati, J.S., 1998. Mental chronometry using
latency-resolved functional MRI. Proc. Natl. Acad. Sci. USA 95,
10902–10907.

Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., Buckner, R.L.,
2000. Characterizing the hemodynamic response: effects of presenta-
tion rate, sampling procedure, and the possibility of ordering brain
activity based on relative timing. NeuroImage 11 (6 Pt 1), 735–759.

Rosen, B.R., Buckner, R.L., Dale, A.M., 1998. Event-related functional
MRI: past, present, and future. Proc. Natl. Acad. Sci. USA 95 (3),
773–780.

Sheridan, R.P., SanFeliciano, S.G., Kearsley, S.K., 2000. Designing tar-
geted libraries with genetic algorithms. J. Mol. Graph. Model. 18
(4–5), 320–334 525.

Vazquez, A.L., Noll, D.C., 1998. Nonlinear aspects of the BOLD response
in functional MRI. NeuroImage 7 (2), 108–118.

Yadgari, J., Amir, A., Unger, R., 1998. Genetic algorithms for protein
threading. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 193–202.

Zarahn, E., Aguirre, G.K., D’Esposito, M., 1997. Empirical analyses of
BOLD fMRI statistics. I. Spatially unsmoothed data collected under
null-hypothesis conditions. NeuroImage 5 (3), 179–197.

309T.D. Wager, T.E. Nichols / NeuroImage 18 (2003) 293–309


	Optimization of experimental design in fMRI: a general framework using a genetic algorithm
	Introduction
	Previous approaches to optimization of fMRI designs
	Genetic algorithms

	Methods
	Linear systems approach
	Accounting for nonlinearity
	Measures of design efficiency
	Parameterizing a model
	Psychological restriction of search space
	Search methods: exhaustive search and genetic algorithm

	Simulations
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4
	Computation times

	Results and discussion
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4
	Extensions of the GA framework

	Conclusions
	References


