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Efficient Experimental Design for fMRI
R. Henson

INTRODUCTION

This chapter begins with an overview of the various
types of experimental design, before proceeding to vari-
ous modelling choices, such as the use of events versus
epochs. It then covers some practical issues concerning
the effective temporal sampling of blood oxygenation-
level-dependent (BOLD) responses and the problem of
different slice acquisition times. The final and main
part of the chapter concerns the statistical efficiency of
functional magnetic resonance imaging (fMRI) designs,
as a function of stimulus onset asynchrony (SOA) and
the ordering of different stimulus-types. These consider-
ations allow researchers to optimize the efficiency of their
fMRI designs.

TAXONOMY OF EXPERIMENTAL
DESIGN

Most experiments involve the manipulation of a number
of factors over a number of levels. For example, a factor of
spatial attention might have two levels of left versus right
covert attention (relative to fixation), while a second fac-
tor might be whether a stimulus is presented to the left or
right visual hemi-field. Orthogonal manipulation of these
two factors corresponds to a ‘2 × 2’ ‘factorial’ design, in
which each factor-level combination constitutes an exper-
imental condition (i.e. four conditions in this case; see
Chapter 13). Factors with a discrete number of levels, as
in the above example, are often called ‘categorical’. Other
factors may have continuous values (such as the dura-
tion of the stimulus for example), and may have as many
‘levels’ as there are values. Such factors are called ‘para-
metric’. Below, we discuss briefly different designs in the
context of the general linear model (GLM) and some of
the assumptions they entail.

Single-factor subtraction designs and ‘pure
insertion’

The easiest way to illustrate different types of design
is with examples. Plate 15(a) (see colour plate sections)
shows an example design matrix with 12 conditions and
5 sessions (e.g. 5 subjects). The data could come from a
positron emission tomography (PET) experiment or from
a second-level analysis of contrast images from an fMRI
experiment. We use this example to illustrate a number
of designs and contrasts below. Initially, we will assume
that there was only one factor of interest, with two levels
(that happened to occur six times in alternation). These
might be reading a visually-presented cue word (‘Read’
condition) and generating a semantic associate of the cue
(‘Generate’ condition). If one were interested in the brain
regions involved in semantic association, then one might
subtract the Read condition from the Generate condi-
tion, as shown by the t-contrast in Plate 15(a). The logic
behind this subtraction is that brain regions involved
in processes common to both conditions (such as visual
processing of the cue word) will be equally active in
both conditions, and therefore not appear in the result-
ing statistical parametric mapping (SPM). In other words,
the contrast should reveal activations related to those
processes unique to generating semantic associations, rel-
ative to reading words.

A criticism often levelled at such ‘cognitive subtra-
ctions’ is that the conditions may differ in ways other than
those assumed by the specific cognitive theory under
investigation. For example, the Generate and Read con-
ditions might differ in phonological processes, as well as
semantic processes (i.e. the subtraction is ‘confounded’).
The assumption that tasks can be elaborated so that they
call upon a single extra process is called the ‘pure inser-
tion’ assumption, and has been the source of much debate
in neuroimaging (Friston et al., 1996). In fact, the debate
goes back to the early days of experimental psychol-
ogy, e.g. the ‘Donders’ method of subtraction and its

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Inc. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7

193



Elsevier UK Chapter: Ch15-P372560 31-7-2006 4:24p.m. Page:194 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

194 15. EFFICIENT EXPERIMENTAL DESIGN FOR fMRI

subsequent refinements (Sternberg, 1969). In short, the
concerns about the pure insertion assumption are not
unique to neuroimaging (Henson, 2005). Below we will
consider some ways to ameliorate such concerns.

Cognitive conjunctions

One way to minimize the probability that interpret-
ation of activation is confounded is to isolate the pro-
cess of interest using multiple different subtractions. The
probability of each subtraction being confounded by the
same (uninteresting) differences is thus reduced. In other
words, one only considers activation that is common to
all subtractions: a method called ‘cognitive conjunction’
(Price and Friston, 1997). For example, consider an exper-
iment with four conditions (Plate 16): passively viewing
a colour-field (Viewing Colour), naming the colour of
that field (Naming Colour), passively viewing an object
(Viewing Object), and naming an object (Naming Object).
One might try to isolate the neuronal correlates of visual
object recognition by performing a conjunction of the
two subtractions: (1) Object versus Colour Viewing and
(2) Object versus Colour Naming. Both subtractions share
a difference in the stimulus (the presence or absence of an
object), but differ in the nature of the tasks (or ‘contexts’).
Thus a potential confound, such as number of possible
names, which might confound the second subtraction,
would not necessarily apply to the first subtraction, and
thus would not apply to the conjunction as a whole.

The precise (statistical) definition of a conjunction has
changed with the history of SPM, and different defi-
nitions may be appropriate for different contexts (the
details are beyond the present remit, but for further dis-
cussion, see Friston et al., 2005; Nichols et al., 2005). In the
present context of ‘cognitive’ conjunctions, a sufficient
definition is that a region survives a statistical thresh-
old in all component subtractions (‘inclusive’ masking),
with the possible further constraint of no interaction
between the subtractions (‘exclusive’ masking). A poste-
rior temporal region shows this type of pattern in Plate 16
(upper panel) and might be associated with implicit
object recognition.

A single parametric factor

To illustrate a parametric factor, let us return to the
Generate and Read experiment in Plate 15. One might be
interested whether there is any effect of time during the
experiment (e.g. activation may decrease over the experi-
ment as subjects acquire more practice). In this case, a
time factor can be modelled with 12 discrete levels, over
which the effects of time could be expressed in a number

of different ways. For example, time may have a linear
effect, or it may have a greater effect towards the start
than towards the end of the experiment (e.g. an exp-
onential effect). The t-contrast, testing the former linear
effect – more specifically, for regions showing a decrease
in activation over time – is shown in Plate 15(b) (in fact,
the plot of activity in the highlighted region suggests an
exponential decrease, but with a sufficiently linear comp-
onent that it is identified with the linear contrast).

When the precise function relating a parametric exper-
imental factor to neuronal activity is unknown, one
option is to express the function in terms of a polynomial
expansion, i.e.:

f�x� = �0 +�1x+�2x
2 +· · · 15.1

where �i are the parameters to be estimated. For N levels
of a factor, the expansion is complete when the terms
run from 0th-order up to order N − 1. In the latter case,
the corresponding design matrix is simply a rotation of
a design matrix where each level is modelled as a sep-
arate column. An example design matrix for an expan-
sion up to second-order, over 12 images, is shown in
Plate 17(a) (e.g. for a single subject in Plate 15): the first
column models linear effects, the second column models
quadratic effects, and the third column models the 0th-
order (constant) effect. An F -contrast on the second col-
umn identifies a region that shows an inverted-U shape
when activity is plotted as a function of the 12 levels
of the factor. If this factor were rate of word genera-
tion, for example, one might conclude that activity in this
region increases as the word rate increases to a certain
level, but then decreases if that (optimal) level is sur-
passed. Parametric modulations that have only one level
per value (i.e. are modelled as continuous rather than
discrete values) can be modelled by a ‘parametric modu-
lation’ in SPM. An example of a parametric modulation
of event-related responses is shown in Chapter 14.

Factorial designs

Many experiments manipulate more than one factor con-
currently. When each condition is associated with one
level of every factor, it is called a ‘factorial’ design.
These are common in experimental sciences because they
allow tests of not only differences between the levels of
each factor, collapsing over other factors (‘main effects’),
but also how the effect of one factor depends on the
level of another factor (‘interactions’). Let us return to
the object–colour experiment in Plate 16. This experi-
ment can conceived as a ‘2 × 2’ design, where one fac-
tor, Task, has two levels (viewing versus naming) and
the other, Stimulus, also has two levels (colour-field or
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object). This ‘2-way’ design, therefore, offers tests of two
main effects and one interaction (see Chapter 13 for a
generalization to ‘M-way’ factorial designs). The compo-
nent subtractions considered for the cognitive conjunc-
tion above are sometimes called the ‘simple effects’. The
interaction in this design would test where the differ-
ence between objects and colour-fields varies between
a naming task and a viewing task. If these conditions
were ordered: Viewing Object, Viewing Colour, Naming
Object, Naming Colour (i.e. with the Task factor ‘rotat-
ing’ slowest), then the interaction would have contrast
weights�1 −1 −1 1�. This can be conceived as the differ-
ence of two differences, i.e. difference of the two simple
effects, i.e. �1 −1 0 0�− �0 0 1 −1�, or as the ‘product’ of
two differences, i.e. �1 − 1� ⊗ �1 − 1�, where ⊗ is the
Kronecker product.

When testing one tail of the interaction (i.e. with a t-
rather than F -contrast), namely where objects produce
greater activation relative to colour-fields when named,
rather than when viewed, a region was found in tem-
poral cortex (see Plate 16 – lower SPM), anterior to that
in the conjunction (upper SPM). Given that the region
showed little difference between objects and colour-fields
under passive viewing (i.e. this simple effect was not
significant), the pattern in Plate 16 might be termed
‘naming-specific object-recognition’. Note also that, if one
attempted to isolate visual object-recognition using only
a naming task, this interaction could be used as evidence
of a failure of pure insertion, i.e. that naming an object in
the visual field involves more than simply visual recog-
nition (Price and Friston, 1997).

An example of an interaction involving a paramet-
ric factor is shown in Plate 17(b). This contrast tests for
a linear time-by-condition interaction in the Generate-
Read experiment (when conceived as a 2 × 6 factorial
design). Again, the contrast weights can be viewed as
the Kronecker product of the Generate versus Read effect
and the linear time effect, i.e. �1 −1�⊗ �5 3 1 −1 −3 −5�.
This t-contrast asks where in the brain the process of
semantic association decreases (linearly) over time (as
might happen, for example, if subjects showed stronger
practice effects on the generation task than the read task).

A final example of an interaction is shown in
Figure 15.1. In this case, the effects Task (Generate versus
Read), Time, and their interactions have been expressed
in the design matrix (for a single subject), rather than
in the contrast weights (cf. Plate 17(a)). This illustrates
the general point that one can always re-represent con-
trasts by rotating both the design matrix and the contrast
weights (see Chapter 13 for further discussion). More
precisely, the columns of the design matrix in Figure 15.1
model (from left to right): effect of Task, linear then
quadratic effects of Time, linear then quadratic inter-
action effects, and the constant. The F -contrast shown,

G-R Time Time G × R G × R
LinLin QuadQuad

F-contrast

FIGURE 15.1 A single-subject design matrix and F -contrast
showing non-linear (linear + quadratic) interactions in a 2×6 facto-
rial design.

which picks out the fourth and fifth columns, would
test for any type of time-by-condition interaction up to
second order. Note that another common example of an
interaction between a categorical factor and a paramet-
ric factor arises in psychophysiological interactions (PPIs;
Chapter 38): in these cases, the psychological factor is
often categorical (e.g. attended versus unattended) and
the physiological factor is invariably parametric, since it
reflects the continuous signal sampled by each scan from
the source region of interest.

EVENT-RELATED fMRI, AND
RANDOMIZED VERSUS BLOCKED

DESIGNS

Event-related fMRI is simply the use of fMRI to
detect responses to individual trials, in a manner
analogous to the time-locked event-related potentials
(ERPs) recorded with electroencephalography (EEG). The
neuronal activity associated with each trial is normally
(though not necessarily) modelled as a delta function –
an ‘event’ – at the trial onset.

Historically, the advent of event-related methods
(Dale and Buckner, 1997; Josephs et al., 1997; Zarahn
et al., 1997), based on linear convolution models (see
Chapter 14), offered several advantages. Foremost was
the ability to intermix trials of different types (so-called
‘randomized designs’), rather than blocking them in
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the manner required for positron emission tomogra-
phy (PET) and initially adopted for fMRI (so-called
‘blocked designs’). The counterbalancing or randomizing
of different trial-types, as is standard in behavioural
or electrophysiological studies, ensures that the average
response to a trial-type is not biased by a specific con-
text or history of preceding trial-types. This is important
because the blocking of trial-types might, for example,
induce differences in the cognitive ‘set’ or strategies
adopted by subjects. Johnson et al. (1997) for example,
provided direct evidence that the presentation format –
randomized or blocked – can affect the ERP associated
with a trial-based memory effect.

Note that there are also disadvantages associated
with randomized designs. Foremost, such designs are
generally less efficient for detecting effects than are
blocked designs (with short SOAs and reasonable block
lengths; see below). In addition, some psychological
manipulations, such as changes in selective attention or
task, may be more appropriate when blocked.

Other advantages of event-related methods include:

1 the post hoc categorization of trial-types according to
the subject’s behaviour (e.g. Henson et al., 1999b), or
post hoc parametric modulation of neuronal activity by
reaction time (RT) for each trial

2 modelling events whose occurrence is beyond exper-
imental control, such as those that can only be indicated
by the subject (e.g. perceptual transitions in the fac-
evase illusion, Kleinschmidt et al., 1998)

3 the use of ‘oddball’ designs, in which the stimulus of
interest is one that deviates from the prevailing context,
and which therefore cannot be blocked (e.g. Strange
et al., 2000).

Epochs versus events and state- versus
item-effects

It is important to distinguish between the experimental
design (randomized versus blocked) and the neuronal
model (events versus epochs). For example, a blocked
design can be modelled as a series of events. Indeed,
modelling the BOLD response to each stimulus within a
block may capture variability that is not captured by a
simple ‘epoch’ (or boxcar) model, particularly for SOAs
of more than a few seconds, which will lead to small fluc-
tuations of the BOLD response around the mean ‘block’
response (Price et al., 1999; Mechelli et al., 2003a; see, e.g.
Figure 15.2 bottom left).

In SPM, the choice of events versus epochs can also
have important conceptual consequences. Consider, for
example, an experiment with two blocks of words pres-
ented at different rates (once every 4 s versus once

Rate = 1/4s Rate = 1/2s

Epoch
model

Event
model

β = 3 β = 5

β = 9β = 11ˆ

ˆˆ

ˆ

FIGURE 15.2 Effects of modelling the same data with events
or epochs.

every 2 s). The data may be such that mean activity dur-
ing the block of words presented at the fast rate may
be greater, but not twice as great, as that for the slow
rate. When modelling both conditions as epochs (upper
panels of Figure 15.2), the parameter estimates for the two
rates may be, for example, 3 and 5 respectively. If ind-
ividual words were modelled as events, however (lower
panels of Figure 15.2), the relative size of the parameter
estimates could be reversed, e.g. 11 and 9 respectively.
This is simply because the parameter estimates have dif-
ferent interpretations for the two types of model: in the
epoch model, they reflect the response per block, whereas
in the event model, they reflect the response per word.
Since there are twice as many words in the fast- relative
to slow-rate blocks, and yet the mean block activity is
not double, the response per word must be less (i.e. a
non-linear saturation as a function of word rate).

Another situation where this issue arises concerns trials
of different duration. If all trials are of the same dura-
tion (and that duration is below ∼ 2 s), then they can be
modelled effectively as events because, after convolution
with the haemodynamic response function (HRF), a dif-
ference in the duration of a trial causes a difference in
the scaling of the predicted response, but has little effect
on its shape (see Chapter 14). Since it is the scaling of the
predicted response that is estimated in the GLM, chang-
ing the duration of all trials (from approx 0 to 2 s) simply
changes the size of the resulting parameter estimates,
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but has no effect on statistics.1 For longer duration trials,
the response begins to plateau, meaning that an ‘epoch
model’ can be a better model. More important, however,
is the case of trials that vary in duration from trial to trial
within a condition, or across conditions. Whether these
are better modelled as events, or as epochs of different
durations (e.g. with duration equal to the RT for each
trial), is debatable. For example, if the stimulus duration
were constant and only RTs varied, then the activity in
V1 may not be expected to vary with RT, so an event
model might fit better (and in this case, the parameter
estimate can be interpreted as the response per trial). For
activity in premotor cortex on the other hand, greater
activity might be expected for trials with longer RTs, so
a ‘varying-duration’ epoch model might fit better (and
in this case, the parameter estimate can be interpreted
as the response per unit time). So the choice of model
depends on the assumptions about the duration of neu-
ronal activity in the particular region of interest. If this
is unknown, trials whose durations vary over a few sec-
onds (as with typical RTs) are probably best modelled
with two regressors: one modelling events, and a second
modelling a parametric modulation of the response, by
the RT on each trial.

Finally, note that one can combine both events and
epochs within the same model. A common example of
this is when trying to distinguish between sustained
(‘state’) effects and transient (‘item’) effects. Chawla et al.
(1999), for example, investigated the interaction between
selective attention (a state-effect) and transient stimu-
lus changes (an item-effect) in such a ‘mixed epoch-
event’ design. Subjects viewed a visual stimulus that
occasionally changed in either colour or motion. In some
blocks, they detected the colour changes, in other blocks
they detected the motion changes. By varying the inter-
val between changes within a block, Chawla et al. were
able to reduce the correlation between the correspond-
ing epoch- and event-related regressors (which increases
the statistical efficiency to detect either effect alone;
see below). Tests of the epoch-related effect showed
that attending to a specific visual attribute (e.g. colour)
increased the baseline activity in regions selective for
that attribute (e.g. V4). Tests of the event-related effect
showed that the impulse response to the same change
in visual attribute was augmented when subjects were

1 This is despite the fact that the ‘efficiency’, as calculated by
Eqn. 15.1, increases with greater scaling of the regressors. This
increase is correct, in the sense that a larger signal will be easier
to detect in the presence of the same noise, but misleading in
the sense that it is the size of the signal that we are estimating
with our model (i.e. the data are unaffected by how we model
the trials).

attending to it (Plate 18). These combined effects of selec-
tive attention – raising endogenous baseline activity and
increasing the gain of the exogenous response – could
not be distinguished in a blocked or fully randomized
design.

Timing issues

There are two practical issues concerning the timing
within randomized designs (which also apply to blocked
designs, but to a lesser extent): the effective sampling
rate of the BOLD response, and the different acquisition
times for different slices within a scan (i.e. volume) when
using echo-planar imaging (EPI).

It is possible to sample the impulse response at post-
stimulus intervals, TS , shorter than the inter-scan interval,
TR, by dephasing event onsets with respect to scan onsets
(Josephs et al., 1997). This uncoupling can be effected
by ensuring the SOA is not a simple multiple of the
TR, or by adding a random trial-by-trial delay in stim-
ulus onsets relative to scan onsets (Figure 15.3). In both
cases, responses at different peristimulus times (PST) are
sampled over trials. The main difference between the
two methods is simply whether the SOA is fixed or ran-
dom, i.e. whether or not the stimulus onset is predictable.
For example, an effective PST sampling of 0.5 Hz can
be achieved with an SOA of 6 s and a TR of 4 s; or by
adding a delay of 0 or 2 s randomly to each trial (pro-
ducing SOAs of 4–8 s, with a mean of 6 s). While effec-
tive sampling rates higher than the TR do not necessarily
improve response detection (since there is little power
in the canonical response above 0.2 Hz), higher sam-
pling rates are important for quantifying the response
shape, such as its latency (Miezin et al., 2000; Henson and
Rugg, 2001).

Dephasing event onsets with respect to scan onsets
does not help the second practical issue concerning
different slice acquisition times. This ‘slice-timing’ prob-
lem (Henson et al., 1999a) refers to the fact that, with a
descending EPI sequence for example, the bottom slice
is acquired TR seconds later than the top slice. If a sin-
gle basis function (such as a canonical HRF) were used
to model the response, and onset times were specified
relative to the start of each scan, the data in the bot-
tom slice would be systematically delayed by TR seconds
relative to the model.2 This would produce poor (and
biased) parameter estimates for later slices, and mean

2 One solution would be to allow different event onsets for dif-
ferent slices. However, slice-timing information is usually lost
as soon as images are re-sliced relative to a different orientation
(e.g. during spatial normalization).
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FIGURE 15.3 Effective sampling rate.
Schematic (left) of event onsets relative to
scan onsets (tall vertical lines represent first
slice per scan; shorter lines represent sub-
sequent slices) and resulting peristimulus
sampling points (right).

Effective sampling
rate = 0.25 Hz

Effective sampling
rate = 0.5 Hz

Stimulus (synchronous)

Scans TR = 4s

Stimulus (random jitter)

Stimulus (asynchronous)

SOA = 6s

SOA = 8s

SOA = 4– 8s

Time

0

0 5 10 15 20 PST (s)

0

0 5 10 15 20 PST (s)

that different sensitivities would apply to different slices
(Figure 15.4(a)). There are two main solutions to this
problem: to interpolate the data during pre-processing
to make it seem as if the slices were acquired simulta-
neously; or use a temporal basis set that allows different
response onset latencies.

Temporal interpolation of the data (using a full
Fourier interpolation) is possible during pre-processing

of images in SPM. One question that often arises is
whether such temporal realignment should be performed
before or after spatial realignment, given that move-
ment often occurs. The answer depends on the order
that slices are acquired within each scan. For sequential
(contiguous) slice-acquisition, temporal interpolation is
probably better performed after spatial realignment. This
is because nearby voxels in space are sampled close in

FIGURE 15.4 The slice-timing problem (from
Henson et al., 1999a) for a TR of 3 s. (a) SPM�t�
for a [1] contrast on a canonical HRF synchronized
with the top slice (left) or synchronized with the
bottom slice (right). Note increased sensitivity to
visual regions in latter case, but reduced sensitivity
to motor regions. (b) SPM�t� when the model is syn-
chronized with the top slice, but the data have been
interpolated as if all slices were acquired at the time
of the top slice. Note sensitivity recovered in both
motor and visual regions. (c) SPM�F� for the canoni-
cal HRF and its temporal derivative. Note sensitivity
again recovered in both motor and visual regions.

DerivativeInterpolated

Bottom sliceTop slice

TR = 3s

(b) (c)

(a)
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time. Therefore, the temporal error for a voxel whose
signal comes from different acquisition slices, due to
re-slicing after correction for movement across scans, will
be small (given that movement is rarely more than a
few ‘slices-worth’). The alternative, of performing tem-
poral realignment before spatial realignment could cause
greater error, particularly for voxels close to boundaries
with large signal differences (e.g. the edge of the cortex):
in such cases, rapid movement may cause the same voxel
to sample quite different signal intensities across succes-
sive scans. Such high-frequency changes are difficult to
interpolate (temporally in this case). The order of pre-
processing is not so clear for interleaved slice-acquisition
schemes, in which adjacent slices can be sampled 1

2 TR

seconds apart. In this case, and when there is no rapid
movement, it may be better to perform temporal realign-
ment before spatial realignment.

During slice-time correction, the data are interpolated
by an amount proportional to their sampling time rela-
tive to a reference slice (whose data are unchanged). The
event onsets can then be synchronized with the acqui-
sition of that reference slice. In SPM, this is equivalent
to maintaining event onsets relative to scan onsets, but
setting the time-point T0 in the simulated time-space of
N time bins, from which the regressors are sampled
(see Chapter 14), to T0 = round�nN

/
S� where the refer-

ence slice is the nth slice acquired of the S slices per
scan. This can ameliorate the slice-timing problem, if one
wishes to use a single assumed response form (e.g. canon-
ical HRF, see Figure 15.4(b)). A problem with slice-timing
correction is that the interpolation will alias frequencies
above the Nyquist limit 1

/
�2TR�. Ironically, this means

that the interpolation accuracy decreases as the slice-
timing problem (i.e. TR) increases. For short TR < 2–3 s,
the interpolation error is likely to be small. For longer
TR, the severity of the interpolation error may depend
on whether appreciable signal power exists above the
Nyquist limit (which is more likely for rapid, randomized
event-related designs).

An alternative solution to the slice-timing problem
is to include additional temporal basis functions (see
Chapter 14) to accommodate the timing errors within
the GLM. The Fourier basis set, for example, does not
have a slice-timing problem (i.e. it is phase-invariant).
For more constrained sets, the addition of the temporal
derivative of the response functions may be sufficient (see
Figure 15.4(c)). The parameter estimates for the deriva-
tives will vary across slices, to capture shifts in the data
relative to the model, while those for the response func-
tions can remain constant (up to a first-order Taylor
approximation, Chapter 14). The temporal derivative of
the canonical HRF, for example, can accommodate slice-
timing differences of approximately plus or minus a sec-
ond, or a TR up to 2 s (when the model is synchronized

to the middle slice in time). A potential problem with
this approach occurs when the true impulse responses
are also shifted in time relative to the assumed response
functions: the combined latency shift may exceed the
range afforded by the temporal derivatives.

EFFICIENCY AND OPTIMIZATION OF
fMRI DESIGNS

This section is concerned with optimizing experimen-
tal fMRI designs for a specific contrast of inter-
est. The properties of the BOLD signal measured by
fMRI – particularly the ‘sluggish’ nature of the impulse
response and the presence of low-frequency noise – can
make the design of efficient experiments difficult to
intuit. This section therefore starts with some general
advice, before explaining the reasons for this advice from
the perspectives of:

1 signal-processing
2 statistical ‘efficiency’
3 correlations among regressors.

General points

Scan for as long as possible

This advice is of course conditional on the subject being
able to perform the task satisfactorily in a sustained fash-
ion. Longer is better because the power of a statistical
inference depends primarily on the degrees of freedom
(df), and the df depend on the number of scans. One might
therefore think that reducing the TR (inter-scan interval)
will also increase your power. This is true to a certain
extent, though the ‘effective’ df depend on the tempo-
ral autocorrelation of the sampled data (i.e. 100 scans
rarely means 100 independent observations; Chapter 14),
so there is a limit to the power increase afforded by a
shorter TR.

If you are only interested in group results (e.g. extrapo-
lating from a random sample of subjects to a population),
then the statistical power normally depends more heav-
ily on the number of subjects than the number of scans
per subject (Friston et al., 2002). In other words, you are
likely to have more power with 100 scans on 20 subjects,
than with 400 scans on 5 subjects, particularly given that
inter-subject variability tends to exceed inter-scan vari-
ability. Having said this, there are practical issues, like
the preparation time necessary to position the subject
in the scanner, that mean that 100 scans on 20 subjects
takes more time than 400 scans on 5 subjects. A common
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strategy is therefore to run several experiments on each
subject while they are in the scanner.

Keep the subject as busy as possible

This refers to the idea that ‘dead-time’ – time during
which the subject is not engaged in the task of inter-
est – should be minimized. Again, of course, there may
be psychological limits to the subject’s performance (e.g.
they may need rests), but apart from this, factors such
as the SOA should be kept as short as possible (even
within blocks of trials). The only situation where you
might want longer SOAs (or blocks of rest) is if you
want to measure ‘baseline’. From a cognitive perspective
though, baseline is rarely meaningful, since it is rarely
under strong experimental control (see below).

Only stop the scanner – i.e. break your experiment into
sessions – if it is strictly necessary. Breaks in scanning
disrupt the spin equilibrium (i.e. require extra dummy
scans), reduce the efficiency of any temporal filtering
(since the data no longer constitute a single time-series),
and introduce other potential ‘session’ effects (McGonigle
et al., 2000).

Do not contrast trials that are remote in time

One problem with fMRI is that there is a lot of low-
frequency noise. This has various causes, from aliased
biorhythms to gradual changes in physical parameters
(e.g. ambient temperature). Thus, any low-frequency ‘sig-
nal’ (induced by your experiment) may be difficult to
distinguish from background noise. This is why SPM
recommends a highpass filter (see Chapter 14). Since con-
trasts between trials that are far apart in time correspond
to low-frequency effects, they may be filtered out.

In SPM, for example, a typical highpass cut-off is
1/128 s ∼ 0	01 Hz, based on the observation that the
amplitude as a function of frequency, f , for a subject
at rest has a ‘1/f+ white noise’ form (Plate 19), in
which amplitude reaches a plateau for frequencies above
approximately 0.01 Hz (the inflection point of the ‘1/f’
and ‘white’ noise components). When summing over fre-
quencies (in a statistical analysis), the removal of frequen-
cies below this cut-off will increase the signal-to-noise
ratio (SNR), provided that most of the signal is above
this frequency.

In the context of blocked designs, the implication is not
to use blocks that are too long. For two alternating condi-
tions, for example, block lengths of more than 50 s would
cause the majority of signal (i.e. that at the fundamental
frequency of the square-wave alternation) to be removed
when using a highpass cut-off of 0.01 Hz. In fact, the opti-
mal block length in an on-off design, regardless of any
highpass filtering, is approximately 16 s (see below).

Randomize the order, or SOA, of trials close together in
time

As will be explained below, in order to be sensitive to
differences between trials close together in time (e.g. less
than 20 s), one either uses a fixed SOA but varies the
order of different trial-types (conditions), or constrains
their order but varies the SOA. Thus, a design in which
two trials alternate every 4 s is inefficient for detecting
the difference between them. One could either randomize
their order (keeping the SOA fixed at 4 s), or vary their
SOA (keeping the alternating order).3

Signal-processing perspective

We begin by assuming that one has an event-related
design, and the interest is in detecting the presence (i.e.
measuring the amplitude) of a BOLD impulse response
whose shape is well-characterized (i.e. a canonical HRF).4

Given that we can treat fMRI scans as time-series, some
intuition can be gained from adopting a signal-processing
perspective, and by considering a number of simple
examples.

To begin with, consider an event every 16 s. The result
of convolving delta functions representing the events
with the canonical HRF is shown in Figure 15.5(a) (see
Chapter 14 for a discussion of linear convolution mod-
els). Maximizing the efficiency of a design is equiva-
lent to maximizing the ‘energy’ of the predicted fMRI
time-series, i.e. the sum of squared signal values at each
scan (equal to the variance of the signal, after mean-
correction). In other words, to be best able to detect the

3 Note that, in this context, blocks can be viewed as runs of
trials of the same type, and a blocked design corresponds to a
varying-SOA design in which there is bimodal distribution of
SOAs: a short SOA corresponding to the SOA within blocks,
and a long SOA corresponding to the SOA between the last trial
of one block and the first of the next.
4 A distinction has been made between the ability to detect a
response of known shape, ‘detection efficiency’ (as considered
here), and the ability to estimate the shape of a response, ‘estima-
tion efficiency’ [0] (Liu et al., 2001;[∗∗15	1] Birn et al., 2002). This
distinction actually reduces simply to the choice of temporal
basis functions: The same efficiency equation (Eqn.15.2 below)
can be used to optimize either detection or estimation efficiency
by using different response functions: e.g. either a canonical
HRF or a FIR basis set respectively. A blocked design will opti-
mize detection efficiency; whereas a randomized design with
null events will optimize estimation efficiency (see Henson, 2004
for further details). Hagberg et al. (2001) considered a range
of possible SOA distributions (bimodal in the case of blocked
designs, exponential in the case of fully randomized designs)
and showed that ‘long-tail’ distributions combine reasonable
detection and estimation efficiency.
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FIGURE 15.5 Effect of convolution
by an assumed HRF on neuronal activity
evoked by (a) events every 16 s, (b) events
every 4 s and (c) events occurring with a
50 per cent probability every 4 s.

signal in the presence of background noise, we want
to maximize the variability of that signal. A signal that
varies little will be difficult to detect.

The above example (a fixed SOA of 16 s) is not particu-
larly efficient, as we shall see later. What if we present the
stimuli much faster, say every 4 s? The result is shown
in Figure 15.5(b). Because the responses to successive
events now overlap considerably, we see an initial build-
up (transient) followed by small oscillations around a
‘raised baseline’. Although the overall signal is high, its
variance is low, and the majority of stimulus energy will
be lost after highpass filtering (particularly after removal
of the mean, i.e. lowest frequency). So this is an even less
efficient design.

What if we vary the SOA randomly? Let’s say we have
a minimal SOA of 4 s, but only a 50 per cent probability of
an event every 4 s. This is called a stochastic design (and
one way to implement it is to intermix an equal number
of ‘null events’ with ‘true events’; see next section). This
is shown in Figure 15.5(c). Though we only use half as
many stimuli as in Figure 15.5(b), this is a more efficient
design. This is because there is a much larger variability
in the signal.

We could also vary the SOA in a more systematic
fashion. We could have runs of events, followed by
runs of no (null) events. This corresponds to a blocked
design. For example, we could have blocks of 5 stimuli
presented every 4 s, alternating with 20 s of rest, as
shown in Figure 15.6(a). This is even more efficient
than the previous stochastic design. To see why, we
shall consider the Fourier transform of these time-series.

First, however, note that, with short SOAs, the pre-
dicted fMRI time-series for a blocked design is similar
to what would obtain if neuronal activity were sus-
tained throughout the block (i.e. during the ISI [∗∗15	2]
as well) as in an epoch model (Figure 15.6(b)). Now,
if we take the Fourier transform of each function in
Figure 15.6(b), we can plot amplitude (magnitude) as
a function of frequency (Figure 15.6(c). The amplitude
spectrum of the square-wave stimulus function has a
dominant frequency corresponding to its ‘fundamental’
frequency �Fo = 1/�20s+20s� = 0	025 Hz�, plus a series of
‘harmonics’ �3Fo
 5Fo
 � � � etc� of progressively decreas-
ing amplitude. The fundamental frequency corresponds
to the frequency of a sinusoidal that best matches the
basic on-off alternation; the harmonics can be thought
of as capturing the ‘sharper’ edges of the square-wave
function relative to this fundamental sinusoid.

The reason for performing the Fourier transform is
that it offers a slightly different perspective. Foremost, a
convolution in time is equivalent to a multiplication in
frequency space. In this way, we can regard the stim-
ulus function as our original data and the HRF as a
‘filter’. One can see immediately from the shape of the
Fourier transform of the HRF that this filter will ‘pass’
low frequencies, but attenuate higher frequencies (this is
why it is sometimes called a ‘low-pass filter’ or ‘tempo-
ral smoothing kernel’). This property is why, for exam-
ple, much high-frequency information was lost with the
fixed SOA of 4 s in Figure 15.5(b). In the present exam-
ple, the result of multiplying the amplitude spectrum of
the stimulus function by that of the filter is that some of
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FIGURE 15.6 Effect of convolu-
tion by an assumed HRF on neuronal
activity evoked by (a) blocks of events,
(b) epochs of 20 s, and (c) the amplitude
spectra after Fourier transform of (b).

Stimulus (“Neural”)(a)

(b)

(c)

0

0

0 16 32 48 64 80 0 16 32 48 64 80

0 16 32 48 64 800 0

0 0

00

5 10 15

Fourier Transform

20 25 30

0 5 10 15 20 25 30

16

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

Freq (Hr)Freq (Hr)Freq (Hr)

M
ag

ni
tu

de

M
ag

ni
tu

de

0

32 48 64 80

Time (s)

Time (s) Time (s)

Time (s) Time (s)

Time (s)

HRF Predicted fMRI Data

×

×

×

=

=

=

the higher-frequency harmonics are attenuated, but the
amplitude of the fundamental frequency is not. In other
words, the majority of the signal is ‘passed’ by the HRF
filter.

We are now in a position to answer the question:
what is the most efficient design of all? Well, assum-
ing we had a limited amount of total ‘stimulus energy’,
the optimal design would be to modulate the neuronal
activity in a sinusoidal fashion, with a frequency that
matches the peak of the amplitude spectrum of the HRF
filter. With the canonical HRF used here, this would be
∼0	03 Hz (1/30 s). The sinusoidal modulation places all

the stimulus energy at this single frequency, shown by
the single line in frequency space in Figure 15.7.

We can now also turn to the question of highpass filter-
ing. Because the filtering is commutative, we can apply
the highpass filter to the low-pass filter inherent in the
HRF to create a single band-pass filter (or ‘effective HRF’,
Josephs and Henson, 1999). This is shown in Figure 15.8,
in which the highpass filter reflects the ‘chunk’ of low
frequencies that has been removed from the HRF filter
(highpass cut-off here = 1/120 s ∼0	008 Hz). The conse-
quence of highpass filtering is shown for long blocks
of 80 s (20 trials every 4 s). Because the fundamental

FIGURE 15.7 Effect of convolution
by an assumed HRF on sinusoidal neu-
ronal activity of 0.03 Hz.
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FIGURE 15.8 Effect of convolution
by an ‘effective’ HRF (i.e. including a high-
pass filter) on 80-s blocks of trials.

frequency in this design �1/160 s ∼0	006 Hz� is lower than
the highpass cut-off, a large proportion of signal energy is
lost (reflected by the rather strange shape of the predicted
fMRI time-series, in which the lowest frequency has been
removed). This is therefore not an efficient design (with
this specific highpass cut-off). This illustrates the general
point that blocked designs are only efficient when the
block length is not too long: approx 15 s-on, 15 s-off is
optimal (see Figure 15.7). Block durations of up to 50 s-on,
50 s-off are also fine (given that the HRF filter does not
attenuate low frequencies much), but block durations
much longer than this (or contrasts between two of many
different types of 50 s-blocks) may be in danger of being
swamped by low-frequency noise.

Finally, we can return to consider what happens in a
stochastic design like that in Figure 15.5(c). The effect

of the randomized SOA is to ‘spread’ the signal energy
across a range of frequencies, as shown in Figure 15.9.
Some of the high- and low-frequency components are lost
to the effective HRF filter, but much is passed, making it
a reasonably efficient design.

Statistical perspective

From the statistical perspective, the aim is to minimize
the standard error of a t-contrast, cT �̂ (i.e. the denomina-
tor of a t-statistic, Chapter 8). Given the specified contrast
of interest, c, and parameter estimates, �̂, the variance of
cT �̂ is given by (Friston et al., 2000):

var�cT �̂� = �2cT �SX�+SVST �SX�+T c 15.2
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FIGURE 15.9 Effect of convolution
by an ‘effective’ HRF on randomized
SOA events (minimum = 4 s).
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where S is a filter matrix incorporating the highpass fil-
ter and any temporal smoothing, and V is the noise
autocorrelation matrix. We want to minimize this variance
with respect to the design matrix, X. If we assume that
the filter matrix S is specified appropriately to ‘whiten’
the residuals, such that SVST = I (i.e. when S = K−1, where
KKT = V ; Chapter 14), and we incorporate S into X, then
this is equivalent to maximizing the efficiency,  :

���2
 c
X� = ��2cT �XT X�−1c�−1 15.3

For a given contrast, c, this equation can be split into the
‘noise variance’, �2, and the ‘design variance’, �XT X�−1

(Mechelli et al., 2003b). If one assumes that the noise var-
iance is independent of the specific design used (which
may not be the case, Mechelli et al., 2003b; see later),
then the efficiency of a contrast for a given design is
proportional to:

��c
X� = �cT �XT X�−1c�−1 15.4

(For F -contrasts, where c is a matrix, the trace operator
can be used to reduce efficiency to a single number; Dale,
1999). Note that �c
X� has no units; it is a relative mea-
sure. It depends on the scaling of the design matrix and
the scaling of the contrasts. Thus, all we can really say is
that one design is more efficient than another (for a given
contrast). In what follows, we use Eqn.15.4 to evaluate
the efficacy of different sorts of design and look at how
designs can be characterized probabilistically.

Stochastic designs

For a single event-type, the space of possible
experimental designs can be captured by two parame-
ters: the minimal SOA ��t� and the probability, pt, of
an event occurring at every �t (Friston et al., 1999). In
‘deterministic’ designs, pt = 1 or pt = 0, giving a series of
events with fixed SOA, as in Figure 15.5(a). In ‘stochas-
tic’ designs 0 ≤ pt ≤ 1, producing a range of SOAs (as
in Figure 15.5(c)). For ‘stationary’ stochastic designs, pt

is constant, giving an exponential distribution of SOAs;
for ‘dynamic’ stochastic designs, pt changes with time.
The extreme case of a dynamic stochastic design is one
in which the temporal modulation of pt conforms to a
square-wave, corresponding to a blocked design. Notice
that the quantities pt and �t parameterize a space of
design matrices probabilistically. In other words, they
specify the probability p�X�pt
�t� of getting any par-
ticular design matrix. This allows one to compute the
expected design efficiency for any class that can be
parameterized in this way:

���c
 pt
�t�� =
∫

p�X�pt
�t���c
X�dX 15.5

This expected design efficiency can be evaluated numer-
ically by generating large number of design matrices
(using pt and �t) and taking the average efficiency
according to Eqn. 15.4. Alternatively, one can com-
pute the expected efficiency analytically as described in
Friston et al. (1999). This allows one to explore different
sorts of designs by treating the design matrix itself as a
random variable. For stochastic designs, efficiency is gen-
erally maximal when the �t is minimal and the (mean)
pt = 1

/
�L+1�, where L is the number of trial types (see

Friston et al., 1999).
Figure 15.10 shows the expected efficiency for detecting

canonical responses to a single event-type versus base-
line, i.e. L = 1 and c = 1, for a range of possible designs.
The deterministic design with �t = 8 s (top row) is least
efficient, whereas the dynamic stochastic design with a
square-wave modulation with �t = 1 s is the most effi-
cient (corresponding, in this case, to a 32 s on-off blocked
design). Intermediate between these extremes are the
dynamic stochastic designs that use a sinusoidal modula-
tion of pt. In other words, these designs produce clumps
of events close together in time, interspersed with peri-
ods in which events are rarer. Though such designs are
less efficient than the blocked (square-wave) design, they
are more efficient than the stationary stochastic design
with �t = 1 s (second row of Figure 15.10), and assum-
ing that subjects are less likely to notice the ‘clumping’
of events (relative to a fully blocked design), may offer
a good compromise between efficiency and subjective
unpredictability.

Transition probabilities

The space of possible designs can also be characterized by
�t and a ‘transition matrix’ (Josephs and Henson, 1999).
This is a generalization of the above formulation that
introduces conditional dependencies over time. For L > 1
different event-types, a Lm ×L transition matrix captures
the probability of an event being of each type, given the
history of the last m event-types. A fully randomized
design with two event-types (A and B) has a simple first-
order transition matrix in which each probability is a half.
The efficiencies of two contrasts, the main effect of A and
B (versus baseline), c = �1 1�T , and the differential effect,
c = �1 −1�T , are shown as a function of �t in Plate 20(a).
The optimal SOA for the main effect under these con-
ditions is approximately 20 s. The efficiency of the main
effect decreases for shorter SOAs, whereas the efficiency
of the differential effect increases. Clearly, the efficiency
for the differential contrast cannot increase indefinitely
as the SOA decreases; at some point, the BOLD response
must saturate (see below). Nonetheless, this graph clearly
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FIGURE 15.10 Efficiency for a single event-type (from Friston
et al., 1999). (a) Probability of event each SOA (left column) and
expected design efficiency (right column, increasing left-to-right) for
a deterministic design with �t = 8 s �1st row�, a stationary stochastic
(randomized) design with pt = 0	5 �2nd row� and dynamic stochastic
designs with modulations of pt by different sinusoidal frequencies
(3rd to 5th rows) and in a blocked manner every 32 s (6th row).

demonstrates how the optimal SOA depends on the spe-
cific contrast of interest.5

Various experimental constraints on multiple event-
type designs can also be considered. In some situations,
the order of event-types might be fixed, and the design
question relates to the optimal SOA. For a design in
which A and B must alternate (e.g. where A and B are
transitions between two perceptual states), the optimal
SOA for a differential effect is 10 s (Plate 20(b), i.e. half of
that for the main effect). In other situations, experimental

5 The main effect, which does not distinguish A and B, is of
course equivalent to a deterministic design, while the differen-
tial effect is equivalent to a stochastic design (from the perspec-
tive of any one event-type).

constraints may limit the SOA, to at least 10 s say, and the
design question relates to the optimal stimulus ordering.
An alternating design is more efficient than a random-
ized design for such intermediate SOAs. However, an
alternating design may not be advisable for psychologi-
cal reasons (subjects’ behaviour might be influenced by
the predictable pattern). In such cases, a permuted design
(in which each of trial-types is presented successively
in a randomly-permuted order) may be a more suitable
choice (see Plate 20(b)).

A further design concept concerns ‘null events’. These
are not real events, in that they do not differ from the
baseline and hence are not detectable by subjects (so are
not generally modelled in the design matrix). They were
introduced by Dale and Buckner (1997) as ‘fixation tri-
als’, to allow ‘selective averaging’ (see Chapter 14). In
fact, they are simply a convenient means of creating a
stochastic design by shuffling a certain proportion of null
events among the events of interest (producing an expo-
nential distribution of SOAs). From the perspective of
multiple event-type designs, the reason for null events is
to buy efficiency for both the main effect and differential
effect at short SOAs (at a slight cost to the efficiency for
the differential effect; see Plate 20(c)).

The efficiencies shown in Plate 20 are unlikely to
map simply (e.g. linearly) onto the size of the t-statistic.
Nonetheless, if the noise variance, in Eqn. 15.3, is inde-
pendent of experimental design, the relationship should
at least be monotonic. Mechelli et al. (2003b) showed
that the noise variance can vary significantly between
a blocked and a randomized design (both modelled
with events). This suggests that the stimulus ordering
did affect (un-modelled) psychological or physiological
effects in this dataset, contributing to the residual error.
When the data were highpass filtered however, the noise
variance no longer differed significantly between the two
designs. In this case, the statistical results were in agree-
ment with the relative efficiencies predicted from the
estimation variances.

Efficiency in terms of correlations

Another way of thinking about efficiency is in terms of
the correlation between (contrasts of) regressors within
the design matrix. In Eqn. 15.3 the term XT X is called
the information matrix and reflects the orthogonality
of the design matrix. High covariance between the
columns of the design matrix introduces redundancy.
This can increase the covariance of the parameter esti-
mates �XT X�−1 and lead to low efficiency (depending on
the particular contrast).

Consider the earlier example of two event-types, A and
B, randomly intermixed, with a short SOA. If we plot
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FIGURE 15.11 Scatter plot for two mean-corrected regressors
(one point per scan) corresponding to two event-types randomly
intermixed with a short SOA.

the resulting two regressors (after convolution with an
HRF) against each other, we would end up with a scatter
plot something like that in Figure 15.11, where each point
reflects one scan. The high negative correlation between
the regressors is because whenever there is high signal
for A, there tends to be low signal for B, and vice versa.
If we consider the projection of this distribution onto the
x = −y direction (corresponding to a �1 − 1� contrast), it
will have a large dispersion, i.e. high experimental vari-
ance, which means the difference between A and B will be
detected efficiently in this design. However, if we project
the distribution onto the x = y direction (corresponding to
a [1 1] contrast), it will have little spread, i.e. low experi-
mental variance, which means that we will not detect the
common effect of A and B versus baseline, efficiently. This
demonstrates the markedly different efficiency for these
two contrasts at short SOAs that was shown in Plate 20(a).

Projection onto the x or y axes (i.e. [1 0] or [0 1] con-
trasts) will have less spread than if the two regressors
were orthogonal and formed a spherical cloud of points.
This shows how correlations can reduce efficiency and
makes an important general point about correlations.
High correlation between two regressors means that the
parameter estimate for each one will be estimated inef-
ficiently, i.e. the parameter estimate itself will have high
variance. In other words, if we estimated each parameter
many times we would get wildly different results. In the
extreme case, that the regressors are perfectly correlated,
the parameters would be inestimable (i.e. they would
have infinite variance). Nonetheless, we could still esti-
mate efficiently the difference between them. Thus, high
correlations within the orthogonality matrix shown by
SPM should not be a cause of concern for some contrasts:
what is really relevant is the correlation between the con-
trasts of interest (i.e. linear combinations of columns of

the design matrix) relative to the rest of the design matrix
(i.e., null space of the contrast).

In short-SOA, randomized designs with no null events,
for example, we might detect brain regions showing a
reliable difference between event-types, yet when we
plot the event-related response, we might find they are
all ‘activations’ versus baseline, all ‘deactivations’ ver-
sus baseline or some activations and some deactivations.
However, these impressions are more apparent than
real (and should not really be shown). If we tested the
reliability of these activations or deactivations, they are
unlikely to be significant. This is because we cannot esti-
mate the baseline reliably in such designs. This is why,
for such designs, it does not make sense to plot error
bars showing the variability of each condition alone: one
should plot error bars pertaining to the variability of the
difference (i.e. that of the contrast actually tested).

Orthogonalizing

Another common misapprehension is that one can
overcome the problem of correlated regressors by
‘orthogonalizing’ one regressor with respect to the other.
This rarely solves the problem. The parameter estimates
always pertain to the orthogonal part of each regres-
sor (this is an automatic property of fitting within the
GLM). Thus, neither the parameter estimate for the
orthogonalized regressor, nor its variance, will change.
The parameter estimate for the other regressor will
change. However, this parameter estimate now reflects
the assumption that the common variance is uniquely
attributed to this regressor. We must have an a priori rea-
son for assuming this (i.e. without such prior knowledge,
there is no way to determine which of the two correlated
regressors caused the common effect). In the absence of
such knowledge, there is no reason to orthogonalize.

The conception of efficiency in terms of correlations
can help with the design of experiments where there is
necessarily some degree of correlation among regressors.
Two main experimental situations where this arises are:

1 when trials consist of two events, one of which must
follow the other

2 blocks of events in which one wishes to distinguish
‘item-’ from ‘state-’ effects (see above).

A common example of the first type of experiment are
‘working memory’ designs, in which a trial consists of a
stimulus, a short retention interval, and then a response.
We shall ignore the retention interval and concentrate on
how one can separate effects of the stimulus from those of
the response. With short SOAs between each event-type
(e.g. 4 s), the regressors for the stimulus and response
will be negatively correlated, as shown in Figure 15.12(a).
Two possible solutions to this problem are shown in
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FIGURE 15.12 Regressors for ‘working memory’ trials presented every 8 s, consisting of (a) stimulus followed after 4 s by a response,
(b) stimulus-response intervals varied from 0 to 8 s, and (c) responses following stimuli by 4 s, but only on 50 per cent of trials.

Figure 15.12(b) and 15.12(c). The first is to vary the time
between successive stimuli and responses (assuming this
is possible and that this variation is large; e.g. 1–8 s). The
second is to keep the stimulus-response interval fixed at
4 s, but only cue a response on a random half of trials.
The effect of both is to reduce the correlation between the
regressors, which increases the efficiency separate brain
activity related to stimuli from that related to responses.

The second type of experiment tries to distinguish tran-
sient responses (item-effects) from sustained responses
(state-effects). Such separation of transient and sustained
effects requires modelling blocks of trials in terms of both
individual events within blocks and sustained epochs
throughout the blocks. An example with a fixed SOA of
4 s between events is shown in Figure 15.13(a). Here, the3
correlation between the event and epoch regressors is nat-
urally high, and the efficiency for detecting either effect
alone is low. Using the same total number of events per
block, but with a pseudo-randomized design in which
the events are randomly spread over the block with a
minimal SOA of 2 s (Figure 15.13(b)), the correlation is
reduced and efficiency increased. (Note that one pev-
erse consequence of having to introduce some long SOAs
between events within blocks in such ‘mixed designs’
is that subjects may be less able to maintain a specific
cognitive ‘state’.)

Effect of non-linearities on efficiency

The above efficiency arguments have assumed linear-
ity, i.e. that the responses to successive trials summate
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FIGURE 15.13 Regressors for ‘mixed designs’ that attempt
to separate transient (item) from sustained (state) effects. (a) 10
events per block presented every SOA of 4 s, (b) 10 events per block
distributed randomly over 2-s SOAs.

linearly, no matter how close together in time they
occur. In reality, we know there is a ‘saturation’, or
under-additivity, even for SOAs of about 10 s (see
Chapters 14 and 27). This means that the efficiency
for stochastic designs does not increase indefinitely as
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the SOA decreases (e.g. for the differential effect in
Plate 20(a)). By estimating non-linearity with a Volterra
expansion (Chapter 14), Friston et al. (1998) calculated the
impact of such non-linearity on evoked responses. The
result is shown in the insert in Plate 20(a). The dotted line
shows the average response to a train of stimuli under
linear assumptions; the solid line shows the effects of
saturation (using a second-order Volterra kernel). While
the solid line is below the dotted line for all SOAs (below
10 s), the divergence is small until SOAs of 1–2 s. Indeed,
the prediction of this calculation is that the optimal SOA
can be as low as 1 s, i.e. the advantage of short SOAs
can outweigh the saturation of responses until surpris-
ingly short SOAs (though it should be noted that this
prediction is based on a specific dataset, and may not
generalize). Indeed, differential responses between ran-
domized event-types have been detected with SOAs as
short as 0.5 s (Burock et al., 1998).

In this chapter, we have looked at how to detect evoked
fMRI responses efficiently. Before turning to models of
evoked responses in EEG in the next chapter, we will con-
clude with some common questions that exercise people
designing fMRI studies

COMMON QUESTIONS

What is the minimum number of events I
need?

Unfortunately, there is no answer to this, other than ‘the
more, the better’. The statistical power depends on the
effect size and variability, and this is normally unknown.
Heuristics like ‘you cannot do an event-related fMRI
analysis with less than N events’ are fairly meaningless,
unless one has a specific effect size in mind (which is
likely to be a function of the brain region, the scanner
strength, the sequence type, etc.). Note it is possible that
fewer trials are required (for a given power) than for an
equivalent contrast of behavioural data (e.g. if the noise
level in, say, RTs exceeds that in a specific cortical region
contributing to those RTs). Furthermore, it is not even
the number of events per se that is relevant, it is also the
SOA and event-ordering (see next question).

Do shorter SOAs mean more power simply
because there are more trials?

It is not simply the number of trials: the temporal deploy-
ment of those trials is vital (as explained above). Thus
400 stimuli every 3 s is less efficient than 40 stimuli every
30 s for detecting a single event-related response (since

a fixed SOA of 3 s produces little experimental variabil-
ity after convolution by the HRF). Two hundred stim-
uli occurring with a 50 per cent probably every 3 s (i.e.
pseudo-randomly mixed with 200 null events) is much
more efficient than either.

What is the maximum number of conditions I
can have?

A common interpretation of the rule – do not compare
trials that are too far apart in time – is not to design exper-
iments with too many experimental conditions. More
conditions necessarily mean that replications of a par-
ticular condition will be further apart in time. How-
ever, the critical factor is not the number of conditions
per se, but the specific contrasts performed over those
conditions. For pair-wise comparisons of only two of, say,
eight blocked conditions the above caveat would apply:
if there were equal numbers of blocks of each condition,
blocks longer than 12.5 s (100 s/8) are likely to entail a
substantial loss of signal when using a high -pass cut-
off of 0.01 Hz. However, this caveat would not apply if
the contrasts of interest included (i.e. ‘spanned’) all eight
conditions. This would be the case if the experimenter
were only interested in the two main effects and the
interaction within a 2 × 4 factorial design (i.e. contrasts
like [1 1 1 1 −1 −1 −1 −1]). If you must compare or
plot only a subset of many such blocked conditions, you
should consider presenting those blocks in a fixed order,
rather than random or counterbalanced order, which will
minimize the time between replications of each condition,
i.e. maximize the frequency of the contrast.

Should I use null events?

Null events are simply a convenient means of achieving
a stochastic distribution of SOAs, in order to allow esti-
mation of the response versus inter-stimulus baseline, by
randomly intermixing them with the events of interest.
However, the ‘baseline’ may not always be meaningful.
It may be well defined for V1, in terms of visual flashes
versus a dark background. It becomes less well defined
for ‘higher’ regions associated with cognition because it
is unclear what these regions are ‘doing’ during the inter-
stimulus interval. The experimenter normally has little
control over this. Moreover, the baseline does not con-
trol for the fact that the events of interest are impulsive
(rapid changes), whereas the baseline is sustained (and
may entail adaptation or reduced attention). For this rea-
son, it is often better to forget about baseline and add an
extra low-level control event instead.
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Another problem with null events is that, if they are too
rare (e.g. less than approximately 33 per cent), they actu-
ally become ‘true’ events in the sense that subjects may be
expecting an event at the next SOA and so be surprised
when it does not occur (the so-called ‘missing stimulus’
effect that is well-known in event-related potential (ERP)
research). One solution is to replace randomly intermixed
null events with periods of baseline between runs of
events (i.e. ‘block’ the baseline periods). This will increase
the efficiency for detecting the common effect versus
baseline, at a slight cost in efficiency for detecting differ-
ences between the randomized event-types within each
block. Yet another problem is that the unpredictability of
the occurrence of true events (caused by the randomly
intermixed null events) can cause delayed or even missed
processing of the events of interest, if subjects cannot
prepare for them.

In summary, null events are probably only worth-
while if:

1 you think the mean activity during the constant inter-
stimulus interval is meaningful to contrast against

2 you do not mind null events being reasonably frequent
(to avoid ‘missing stimulus’ effects)

3 you do not mind the stimulus occurrence being unpre-
dictable (as far as the subject is concerned).

Having said this, some form of baseline can often serve
as a useful ‘safety net’ (e.g. if you fail to detect differences
between two visual event-types of interest, you can at
least examine V1 responses and check that you are seeing
a basic evoked response to both event-types – if not, you
can question the quality of your data or accuracy of your
model). Moreover, you may need randomly to inter-mix
null events if you want to estimate more precisely the
shape of the BOLD impulse response (see footnote 4). It is
often the case that people include a low-level baseline or
null event to use as reference for a localizing contrast on
tests for differences among true events. In other words,
the contrast testing for all events versus baseline can
serve as a useful constraint on the search volume for
interesting comparisons among events.

Should I generate multiple random designs
and choose the most efficient?

This is certainly possible, though be wary that such
designs are likely to converge on designs with some
structure (e.g. blocked designs, given that they tend to be
optimal, as explained above). This may be problematic
if such structure affects subjects’ behaviour (particularly
if they notice the structure). Note, however, that there
are software tools available that optimize designs at the
same time as allowing users to specify a certain level

of counterbalancing (to avoid fully blocked designs, e.g.
Wager and Nichols, 2003).
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