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This article considers the efficiency of event-related
MRI designs in terms of the optimum temporal pat-
ern of stimulus or trial presentations. The distinction
etween ‘‘stochastic’’ and ‘‘deterministic’’ is used to
istinguish between designs that are specified in terms
f the probability that an event will occur at a series of
ime points (stochastic) and those in which events
lways occur at prespecified time (deterministic). Sto-
hastic designs may be ‘‘stationary,’’ in which the prob-
bility is constant, or nonstationary, in which the
robabilities change with time. All these designs can
e parameterized in terms of a vector of occurrence
robabilities and a prototypic design matrix that em-
odies constraints (such as the minimum stimulus
nset asynchrony) and the model of hemodynamic
esponses. A simple function of these parameters is
resented and used to compare the relative efficiency
f different designs. Designs with slow modulation of
ccurrence probabilities are generally more efficient
han stationary designs. Interestingly the most effi-
ient design is a conventional block design. A critical
oint, made in this article, is that the most efficient
esign for one effect may not be the most efficient for
nother. This is particularly important when consider-
ng evoked responses and the differences among re-
ponses. The most efficient designs for evoked re-
ponses, as opposed to differential responses, require
rial-free periods during which baseline levels can be
ttained. In the context of stochastic, rapid-presenta-
ion designs this is equivalent to the inclusion of ‘‘null
vents.’’ r 1999 Academic Press

Key Words: functional neuroimaging; fMRI; stochas-
ic; event-related; experimental design.

INTRODUCTION

A current issue in event-related fMRI is the choice of
nterstimulus interval or more precisely stimulus onset
synchrony (SOA). The SOA, or the distribution of
OAs, is a critical factor in experimental design and is
hosen, subject to some constraints, to maximize the

fficiency of response estimation. The constraints on i

607
he SOA clearly depend upon the nature of the experi-
ent but are generally satisfied when the SOA is small

nd derives from a random distribution. Rapid presen-
ation rates allow for the maintenance of a particular
ognitive or attentional set, decrease the latitude that
he subject has for engaging alternative strategies, or
ncidental processing, and allows the integration of
vent-related paradigms using fMRI and electrophysi-
logy. Random SOAs ensure that preparatory or antici-
atory factors do not confound event-related responses
nd ensure a uniform context in which events are
resented. These constraints speak to the well-docu-
ented advantages of event-related fMRI over conven-

ional blocked designs (e.g., Buckner et al., 1996; Dale
nd Buckner, 1997; Josephs et al., 1997; Zarahn et al.,
997; Rosen et al., 1998).
There has been a growing interest in the choice of

OAs that has been focused by the emergence of a
ichotomy in event-related fMRI using multiple trial/
vent types. The first approach involves the use of very
hort SOAs (e.g., Dale and Buckner, 1997; Clark et al.,
998; Burock et al., 1998). In these paradigms SOAs of
second or less are commonplace. The other approach
sed relatively long SOAs of several seconds or more

e.g., Friston et al., 1998b). The aim of this article is to
ompare the relative efficiency of these approaches. To
o this a framework that accommodates stochastic or
onstochastic event or epoch-related designs is intro-
uced. The sections below consider (i) how to assess the
ensitivity or efficiency of a design, (ii) how different
orts of designs can be parameterized in a common
ramework to facilitate comparisons, and (iii) how the
fficiency of a particular design depends on whether
ne is looking for evoked responses per se or differences
n evoked responses.

SENSITIVITY AND EFFICIENCY

In Friston et al. (1994), we characterized the form of
he hemodynamic impulse response function (HRF)
sing least-squares deconvolution and a linear time
nvariant (LTI) model, where evoked neuronal re-

1053-8119/99 $30.00
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608 FRISTON ET AL.
ponses are convolved with the HRF to give the mea-
ured hemodynamic response. This convolution frame-
ork is the cornerstone for making statistical inferences
bout activations in fMRI using the general linear
odel. In Friston et al. (1995), we introduced the notion

f temporal basis functions to model evoked responses
n fMRI and applied it to event-related responses in
osephs et al. (1997). The advantage of using temporal
asis functions (as opposed to an assumed form for the
RF) is that one can model voxel-specific forms for
emodynamic responses and differences among re-
ponses to different sorts of events or trials (Friston et
l., 1998a). Temporal basis functions allow for a grace-
ul transition between the efficiency of fixed-form re-
ponse models (like a conventional box-car) and the
exibility of finite impulse response (FIR) characteriza-
ions that embody no constraints on the modeled re-
ponse.
Irrespective of the form of the HRF, its extended time

ourse effectively smooths neuronal responses, elicited
n rapid succession with a fixed SOA, to render them
at. This puts a constraint on the minimum SOA that
an be usefully employed in fMRI that depends upon
he experimental design. By using a suitable distribu-
ion of SOAs one can make some events sufficiently
parse so that the hemodynamic response can be
stimated. The objective of experimental design is to
ake this estimation as efficient as possible. The

fficiency of an estimator is inversely related to its
ariance. Consider the general linear model

Y 5 Xb 1 e , (1)

here Y is a column vector corresponding to the
bserved hemodynamic response at any voxel, X is a
esign matrix modeling the expected hemodynamic
esponses, b is a vector of parameters or coefficients
ertaining to the explanatory variables in X, and e is a
ormally distributed error term ,N(0, s2I). Here we
ssume that the data have been prewhitened if neces-
ary (see Dale et al., in preparation, and Burock et al.,
n preparation, for a discussion of efficient, unbiased
stimation of event-related fMRI responses in the
resence of serial correlations). The efficiency of the
stimation is inversely related to the (co)variance of the
arameter estimates. This (co)variance is a function of,
nd only of, the design matrix and noise variance s2.

cov 5b̂6 5 s2(XTX)21, (2)

here X embodies all the information about experimen-
al design. From the current point of view it contains
nformation about the SOAs, which event occurs when,
nd the constraints on the form of the hemodynamic

esponse. In general X can be created by convolving a d
et of delta functions, indicating the presence of a
articular event, with a small set of basis functions that
odel the hemodynamic response to those events. A

pecial case of this general approach obtains when the
asis functions are delta functions placed at a discrete
et of peristimulus times. This special case corresponds
o a FIR model and is formally related to ‘‘selective
veraging’’ (Dale and Bucker, 1997), which requires
timulus presentation and data acquisition to be syn-
hronized.
Maximizing efficiency means minimizing the (co)vari-

nces in Eq. (2), which is equivalent to maximizing the
co)variance of the design matrix itself XTX (cf. the
nergy ratio used by Zarahn et al. submitted for
ublication). Put simply, maximizing the efficiency of
he estimators reduces to maximizing the variance (or
ower) accounted for by the explanatory variables or
ompounds thereof that are interesting. If there is only
ne event type, and a fixed form for the HRF is
ssumed, then there is only one column in X and one
arameter estimate. In this instance the (co)variance of
he parameter estimate reduces to a scalar and this can
e used to optimize the distribution of interstimulus
ntervals. More generally, however, there will be sev-
ral columns in X due to the fact that more than one
vent or trial type has been used in the experiment
nd/or the hemodynamic response is modeled with two
r more basis functions. In this instance we can specify
compound or weighted sum of the parameter esti-
ates for which we want to maximize the efficiency. For

xample, when using two trial types (each modeled
ith a single basis function) the differential evoked

esponses would be estimated using the weights 21
nd 11 (these are referred to as contrast weights and
ill be denoted by the column vector c). In general the
ariance of any estimator of interest, specified as a
ontrast of parameter estimates is

cov 5cTb̂6 5 s2cT(XTX)21c (3)

nd

Efficiency ~ trace5cT(XTX)21c621.

he trace operator allows for cases when multiple
ontrasts are specified (e.g., when all basis functions
re equally interesting such as in selective averaging;
ale et al., in preparation). The critical thing to note, at

his stage, is that the best design matrix for one
ontrast, in terms of efficiency, may not be the best for
nother contrast. In the example above the best distri-
utions of SOAs for detecting an event-related response
tself (c 5 [1 0]T) may not be the best for detecting the

T
ifference between two events (c 5 [1 21] ).



p
e
w
t
d
f
t
s
t
t
c
t

a
u
a
d
p
d
p
l
T
e
a
t
d
s
d
t

d
s
a
s
s
s
o
c
s
e
c
H
c
e
a
d
T
s
c

fi

F
(
b
s
c
t
s
h
1
t
t
s
i
i
a

a
s
e
s
o
o
S
b
o
a
c
m
t
t
t
(
[
t
o
p
w
a

(
w

f
f
e
m
l
e
e
t
i

609STOCHASTIC DESIGNS IN EVENT-RELATED fMRI
PARAMETERIZING AND COMPARING
fMRI DESIGNS

fMRI designs can vary over a large number of
arameters. In order to compare the efficiency of differ-
nt designs it is useful to have some common frame-
ork that accommodates them all. The efficiency can

hen be examined in relation to the parameters of the
esign. A general taxonomy of designs might be the
ollowing: Any design can be stochastic or determinis-
ic. In stochastic designs (Heid et al., 1997) one needs to
pecify the probabilities of an event occurring at all
imes those events could occur. In deterministic designs
he occurrence probability is unity and the design is
ompletely specified by the times of stimulus presenta-
ion or trials.

The idea of stochastic designs can be made more
ccessible by relating them to designs that we typically
se. For example a stochastic design with one event
llows one to ask whether the response to that event
iffers from zero. Here the event of interest can be
resented at a number of regularly spaced time points
uring the scanning period. Whether it is actually
resented at these times or not is determined probabi-
istically, usually by some random number generator.
he nonoccurrence at certain time points can be consid-
red as ‘‘null events’’ and corresponds to the inclusion of
baseline in a more traditional framework. The case of

wo event types can be treated as a basic subtraction
esign where one can ask if the differential response is
ignificant. Generally stochastic designs subsume any
esign that calls upon a random process for its specifica-
ion.

The distinction between stochastic and deterministic
esigns pertains to how a particular realization or
timulus sequence is created. The efficiency afforded by
particular event sequence is a function of the event

equence itself and not of the process generating the
equence (i.e., deterministic or stochastic). In fact, a
tochastic process is highly unlikely to generate an
ptimal sequence (in the sense of maximizing effi-
iency) for any experiment of finite duration. With a
tochastic process, the design matrix X and associated
fficiency are random variables, where the efficiency
onverges only in the limit of infinite length sequences.
owever, for finite length sequences the expected effi-

iency, over an infinite number of realizations of X, is
asily computed and this is the tenet of the approach
dopted by Zarahn and colleagues and extended here to
eal with nonstationary stochastic designs (see below).
he motivation for this approach is to compare various
tochastic designs and compare their expected effi-
iency in relation to equivalent deterministic designs.
Under deterministic designs the events can occur at
xed intervals (e.g., fixed-interval event-related design; e
riston et al., 1998b) or the SOAs can vary over time
e.g., variable-interval event-related and conventional
lock or epoch-related designs). Under stochastic de-
igns the temporal support (i.e., times at which a trials
ould occur) must be specified. This could of course be
he entire scanning period but generally comprises
ome discrete time points. One parameterization that
as emerged in event-related fMRI (Dale and Buckner,
997; Zarahn et al., submitted for publication) is in
erms of a minimum SOAmin and the probability Pi that
he ith event type will occur every SOAmin. Clearly the
um of Pi over all event types i is unity. The correspond-
ng SOAs have a geometric distribution. The parameter-
zation of these designs is in terms of the scalars SOAmin

nd Pi.
Here we adopt a more general formulation that

ccommodates both stochastic and deterministic de-
igns. This model is based on that employed by Zarahn
t al., (submitted for publication) to look at stationary
tochastic designs. In the present model the probability
f any event occurring is specified at each time it could
ccur. Here Pi is a vector with an element for every
OAmin. This formulation engenders the distinction
etween stationary stochastic designs, in which the
ccurrence probabilities are constant and nonstation-
ry, and ‘‘modulated’’ stochastic designs, in which they
hange over time. For deterministic designs the ele-
ents of Pi are 0 or 1, with the presence of a 1 denoting

he occurrence of an event. An example of Pi might be
he box cars used in conventional block designs. Stochas-
ic designs of the sort proposed by Dale and Buckner
1997) correspond to a vector of identical values Pi 5
Pi Pi Pi . . . Pi]T and are therefore stationary in na-
ure. Stochastic designs with temporal modulation of
ccurrence probability (e.g., Elliot et al., submitted for
ublication) would correspond to probability vectors
ith time-dependent probabilities varying between 0
nd 1 (inclusive).
The advantage of this parameterization is that the

expected) efficiency of any design is easily computed
ith Eq. (3) using

7XTX8 5 PT(STS 2 D)P 1 o
m

PmDmm (4)

or one trial type and basis function (see the Appendix
or a full description and more general cases). 7.8 denotes
xpectation or average. Here S is a prototypic design
atrix that embodies information about SOAmin, the

ength of the time-series, and the basis functions
mployed. D 5 diag(STS). The nice thing about this
xpression is that by setting the mean of the probabili-
ies P to a constant, one can compare different determin-
stic and stochastic designs given the same number of

vents (or equivalently the same mean SOA). Some
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610 FRISTON ET AL.
ommon examples are given in Fig. 1 for an SOAmin of 1
and 32 expected events or trials over a 64-s period

except the fixed deterministic example with 8 events).
t can be seen that the least efficient design is a
xed-interval deterministic design (despite the fact
hat the SOA is roughly optimal for this class), whereas
he most efficient is a block design. See Burock et al.
1998) for an empirical illustration of the increased
fficiency afforded by randomized designs relative to
xed SOA designs.
A slow modulation of occurrence probabilities gives

igh efficiency while perhaps retaining the advantages
f stochastic designs and may represent a very useful
ompromise between the high efficiency of block de-
igns and the psychological benefits and latitude of
tochastic designs. The fact that slow modulations, as
pposed to high-frequency modulations, are more effi-
ient is consistent with the fact that the eigenvectors of
STS 2 D), with large positive eigenvalues, are low
requency in nature for this SOAmin and basis set (a
anonical HRF). It should be noted that the relative
fficiencies will change with changes in design param-
ters such as SOAmin, basis set, and the chosen con-
rast. In our experience there is always some nonstation-
ry stochastic design that is substantially more sensitive
han the equivalent stationary design.

The optimization of P, in terms of efficiency, is a
onlinear problem that is compounded by the fact that
he elements of P must lie between 0 and 1. Nonlinear
ptimization of q, where P 5 (sin(q) 1 1)/2 (as imple-
ented in MatLab (MathWorks Inc., Natick, MA))

uggests that the block design is at least a local
aximum and may be the global maximum given that
e cannot find a more efficient design.

WHAT IS THE MINIMUM SOA FOR A VALID
LINEAR APPROXIMATION?

Generally, for any design, the smaller the SOAmin, the
reater the number of trials or events that can be
resented and the more efficient that design (there are
mportant exceptions that will be mentioned below).

hat then is the smallest SOA one could entertain and
till rely on predictions about efficiency based on Eqs.
3) and (4)? The lower limit on SOAs is dictated by
onlinear interactions among events, and the evoked
esponses, when they are very proximate in time. These
onlinearities can be thought of as saturation phenom-
na or ‘‘refractoriness’’ at a neuronal or hemodynamic
evel. We have already presented a fairly comprehen-
ive analysis of these effects in the context of single
ord presentation in Friston et al. (1998b) that will be
riefly reprised here: Conventional fMRI models use
inear time invariant models (e.g., Friston et al., 1994;
oynton et al., 1997). However, there is evidence to

uggest that nonlinear effects may predominate at very w
hort SOAs (e.g., Vazquez and Noll, 1998). In Friston et
l. (1998b) we used a nonlinear convolution model
Volterra series) to estimate high-order convolution
ernels in a way that is directly analogous to the
stimation of event-related responses in terms of a
inear or first-order kernel (i.e., the HRF). Having
stimated these kernels, we were then able to examine
he responses to stimuli over continuous ranges of
OAs. The results of a typical analysis are given in Fig.
. This represents the average response, integrated
ver a 32-s train of stimuli, as a function of SOA within
hat train. The data were based on kernel estimates
rom a voxel in the left posterior temporal region of a
ingle male subject obtained during the presentation of
ingle words at a variety of rates. The task was a simple
assive listening task. The solid line represents the
stimated response and shows a clear maximum at just
ess than 1 s. The dots represent estimates based on
mpirical data from the same experiment. The broken
ine shows the expected response in the absence of
onlinear effects (i.e., that predicted by setting the
econd-order kernels to zero). It is clear that nonlineari-
ies become important at around 2 s, leading to an
ctual diminution of the integrated response at subsec-
nd SOAs. This effect probably corresponds to a hemo-
ynamic, as opposed to a neuronal, refractoriness be-
ause it was not observed when the same experiment,
ith the same subject, was replicated with PET. In
rief, over the range studied, increasing presentation
ate caused linear increases in regional cerebral blood
ow (roughly equivalent to integrated synaptic activ-

ty). The fMRI signal on the other hand evidenced
aturation, suggesting that nonlinearities enter at the
ranslation of neuronal activity into the hemodynamic
esponse as measured with fMRI. This, of course, does
ot preclude nonlinearities at the neuronal level but
oes suggest that they are not a sufficient explanation
or the nonlinearities observed. The implications of
hese results are that (i) SOAs should not really fall
uch below 1 s and (ii) at short SOAs the assumptions

f linearity, upon which the analyses in this paper rely,
re violated. It should be noted that these data pertain
o single word processing in auditory association cor-
ex. More ‘‘linear’’ behaviors may be expressed in
rimary sensory cortex as suggested by the work of
ale and Buckner (1997). Furthermore Burock et al.

1998) have demonstrated the feasibility of using mini-
um SOAs as low as 500 ms, even when sampling at a

ower rate (e.g., TR 5 1 s).

DIFFERENT DESIGNS FOR DIFFERENT EFFECTS

In this section we consider why, in some instances, a
ery short average SOA is best, whereas in others a
onger SOA is more appropriate. Here we deal explicitly

ith multiple trial types and define the trial onset
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FIG. 1. A comparison of some common (and some untried) designs. The left-hand column is a graphical representation of the occurrence
robabilities expressed as a function of time (seconds). The efficiency of each design is shown along the ordinate assuming an SOAmin of 1 s, a
ime-series of 64 s, and the first of the basis functions shown in Fig. 4. The expected number of events (i.e., the mean value of P) was 0.5 in all

ases (apart from the first), corresponding to an expected SOA of 2 s or 32 events.
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612 FRISTON ET AL.
synchrony (TOA) as the interval between onsets of a
articular trial type. The best TOA depends upon the
ature of the characterization of evoked responses that

s required. For any given event type the associated Pi

etermines the average or expected TOA for that event
ype. This is simply SOAmin/Pi, where Pi is the mean
robability for the ith trial type. This relationship is
llustrated in Fig. 3, where the efficiency of a stationary
tochastic design, with one trial type and two basis
unctions, is plotted as a function of the occurrence
robability P and the equivalent TOA (where mean
OA 5 SOAmin/P). In this design the most efficient
robability is 0.5, giving a mean TOA of 2 · SOAmin.
ere SOAmin was 1 s and the basis functions corre-

ponded to a canonical HRF (a mixture of two gamma
unctions that emulate the early peak at around 5 s and

subsequent undershoot) and the derivative of this
ith respect to latency (Fig. 4).
In designs with multiple trial types the effects of

nterest may relate to the responses evoked by each
vent type or they may be differential responses on
omparing event types. These two sorts of effects are
ested with different compounds or contrasts of the
arameter estimates and lead to different optimal

FIG. 2. Plot of integrated response over a 32-s stimulus train as
onlinear convolution model and empirical responses to single words p
ots: Empirical averages based on the presentation of actual stim

econd-order effects.
OAs. This distinction can be addressed from the b
erspective of a number of designs. In experiments
ith more than one trial type it will be shown that very

hort TOAs are appropriate for analyses in which only
he difference between responses to one event type and
nother are of interest. When the responses themselves
re important longer TOAs are appropriate and are
nsured by the inclusion of null events into the design.
In this section we present results using Eqs. (3) and

4) to show how efficiency varies as a function of
ccurrence probability and the implications for the
ptimum mean TOA. In the analyses below the expecta-
ion of the parameter estimate (co)variances for two
rial types was computed as described in the Appendix
sing the temporal basis functions in Fig. 4. The
nsuing parameter estimates correspond to estimates
f the amplitude and latency of the evoked response for
oth trial types. We present results for inferences about
he amplitude of the responses (identical results obtain
or latency and differential latency estimates provided
he basis functions employed are orthonormal).

Stationary Stochastic Design with P 5 0.5

In this design an event occurs every SOAmin that may

function of interstimulus interval. Solid line: Estimates based on a
sented in a passive listening task to a single subject at different rates.
us trains. Broken line: The responses expected in the absence of
a
re
ul
e either trial type 1 or 2. In this example we take the
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FIG. 3. Efficiency as a function of occurrence probability for stationary stochastic designs. (Top) Expressed directly in terms of occurrence
robability. (Bottom) Expressed in terms of the equivalent expected trial onset asynchrony (TOA). These results, and those in the remaining
gures, are for 64-s time-series.
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614 FRISTON ET AL.
tationary probabilities of the two types to be the same,
1 5 P2 5 0.5. In this example the SOAmin was varied
etween 2 and 18 s. Figure 5 shows the resulting
hanges in efficiency for a contrast testing for the
mplitude of response evoked by the first event c 5
1 0 0 0]T (solid line) and differential responses c 5
1 0 21 0]T (broken line). It is immediately apparent
hat although the most efficient SOAmin for differential
esponses is very small, longer SOAs of around 16 s are
ecessary to estimate the responses themselves. This is
crucial observation that speaks to the difference

etween short and long SOA designs. Although rapid
resentation rates are very efficient for detecting differ-
nces, they are incapable of estimating the form or
egree of evoked response per se or do so with negligible
fficiency unless there are at some periods that provide
baseline reference. There is a problem here though in

hat using long TOAs generally leads to inefficient
esigns. A more powerful approach (adopted in Buck-
er et al., 1998; Wagner et al., 1998; Burock et al., 1998)

s to explicitly include null events as an extra event
ype and estimate the evoked response in relation to
hose null events:

Stationary Stochastic Designs with Null Events

Above we showed that relatively long TOAs are

FIG. 4. Basis functions used in constructing the design matrix ex
solid line) and the temporal derivative (broken line).
equired to estimate responses (as opposed to differen- o
ial responses) when an event occurred every SOAmin.
owever by reducing P to less than 0.5 there will be

ome trials on which no event occurs. These null events
ow provide a baseline against which the response to
ither trial type 1 or 2 can be estimated even using a
ery small SOAmin. Figure 6 shows this for a fixed
OAmin of 1 s. Here the most efficient occurrence
robability for detecting differences is, as one might
xpect, 0.5. However, the best probability for detecting
he responses themselves is about 0.3. This gives a
ean TOA for each event type of just over 3 s.
In the case of null events the SOAmin was fixed (at 1 s)

nd P was varied. In the preceding example P was fixed
at 0.5) and SOAmin was varied. Clearly these are just
wo variations on the general stationary stochastic
wo-trial design, defined in terms of SOAmin and P.
igure 7 shows the efficiency as a function of these two
arameters and demonstrates that ensuring the inclu-
ion of baseline periods with null events supervenes
ver increasing the SOAmin.
In summary by treating the baseline or control

ondition as any other condition (i.e., by including null
vents, with equal probability, as other event types),
he efficiency in estimating the evoked response is the
ame as that for any difference between nonnull trials.
hus, by making the probability of null events and all

tations (see Appendix). These are a mixture of two gamma functions
pec
ther events equal to 1/(N 1 1), where N is the number
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615STOCHASTIC DESIGNS IN EVENT-RELATED fMRI
f event types, we obtain a mean TOA of (N 1 1) ·
OAmin. Such designs result in optimal and equivalent
fficiency for all comparisons (within stationary stochas-
ic designs). On the other hand, if one were only
nterested in the differences among the N trial types, a

ean TOA of N · SOAmin is best. It should be noted that
fficiency depends only on the variance of the estimator
nd sensitivity also depends on the actual scaling of the
rue underlying effects; therefore one cannot say a
riori that sensitivity is equivalent for all comparisons.

CONCLUSION

The distinction between stochastic and deterministic
as been used above to distinguish between designs
hat are specified in terms of the probability that an
vent will occur at specified times and designs where
vents always occur at prespecified times (clearly deter-
inistic designs are the limiting case of stochastic

esigns, where all the probabilities are zero or one).
tochastic designs may be stationary, where the prob-
bility is constant, or nonstationary, where occurrence
robabilities change with time. All these designs can be
arameterized in terms of a vector of occurrence prob-
bilities P and a prototypic design matrix that embod-

FIG. 5. Efficiency in a stationary stochastic design with two ev
unction of SOAmin. Solid line: Efficiency of estimates of the response
esponses. Here the time-series is 256 s.
es constraints (such as the minimum interval between t
timulus onsets) and the basis functions employed to
odel hemodynamic responses S. Universally long
OA (e.g., Friston et al., 1998b) designs are less efficient
han rapid presentation designs. Nonstationary de-
igns, with modulation of occurrence probabilities, can
e more efficient than stationary designs. The most
fficient design of all is the conventional deterministic
lock design. A slow modulation of occurrence probabili-
ies gives high efficiency while retaining the advan-
ages of stochastic designs and may represent a useful
ompromise between the high efficiency of block de-
igns and the psychological benefits and latitude of
tochastic designs.
In experiments with multiple trial types the most

fficient design for one effect may not be the most
fficient for another. This is particularly important
hen considering evoked responses and the differences
mong responses. The optimum SOAs for the former
re longer than for the latter and attain when a null
vent is included with the same occurrence probability
s the index events. In summary the choice of optimal
esign is critically dependent upon the nature of the
nferences that are sought and in turn the effect that
ne is trying to estimate. Although there may be an
ptimal SOA for a given effect or compound of effects,

types each presented with a probability of 0.5 every SOAmin, as a
single trial type. Broken line: Efficiency of estimators of differential
ent
to a
he best SOA for one sort of inference may be different



r

FIG. 6. As for Fig. 3 but now for two trial types. Solid line: Effic

esponse. Here the time-series is 64 s.

iency of evoked responses per se. Broken line: Efficiency of differential
616
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FIG. 7. As for Figs. 5 and 6 but now efficiency is expressed as a functions of both P and SOAmin. Here the time-series is 256 s.
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rom that required by another. A novel idea that
merged from this work is the notion of nonstationary
r modulated stochastic designs that combine the facil-
ty to specify high-efficiency stimulus sequences and
till render them unpredictable from the subject’s point
f view.
In event-related fMRI experiments with rapid presen-

ation of multiple stimulus types the inclusion of a null
vent is a critical consideration and is necessary to
haracterize event-specific responses and differences in
heir form or latencies. One of the main motivations to
haracterize event-specific responses, in addition to
ifferential responses, is to select areas that are acti-
ated by both event types and then see whether or not
hey show a difference. For example, consider a photic
timulation experiment under two different levels of
ttention. If one were interested only in the attentional
odulation of evoked responses, then the most efficient

esign would involve the presentation of a stimulus
very SOAmin. Note, however, that this experimental
esign would preclude any estimation of photic re-
ponses per se because there may be many areas that
id not show attentional modulation and visually evoked
esponses in these areas would never be detected. In
his example it may be useful to identify all regions that
howed a visual evoked response and then test for
ttentional modulation in, and only in, these regions.
As a final comment, it should be noted that designs

sed in electrophysiology can be emulated in fMRI with
ery small SOAs as long as the occurrence probabilities
re sufficiently low to render the expected SOA suitable
or the inferences sought. In electrophysiology most of
he interesting work has been predicated on differential
voked responses and, if this generalizes to event-
elated fMRI, very short SOA designs will have a
entral, if not exclusive, role in functional neuroimag-
ng.

APPENDIX

Let the hemodynamic response to an event or trial be
odeled in terms of k orthonormal basis functions fi(tn),
here tn are the peristimulus times at which scans are
cquired (tn 2 tn21 is assumed to be small for simplicity):

o
n

fi(tn) · fj(tn) dt 5 5 1 (i 5 j),

0 (i Þ j).
(A.1)

he N 3 Pk design matrix X will contain a column for
ach basis function, for each of the P trial types. N is the
umber of scans in the time series. For simplicity we
ill deal with one basis function and one trial type and
eneralize later. In this case X reduces to a N 3 1
olumn vector. Each realization of X can be expressed
s X 5 S · b, where S is a N 3 M matrix whose mth

olumn Sm contains a basis function at tm 5 m · SOAmin
m 5 1, 2, . . . , M ), the times at which the mth event
ould occur. If Sn,m 5 f (tn 2 tm ), where tn is the time of
he nth scan, then Sm is the mean corrected vector [S1,m,
2,m, . . . , SN,m]T. When constructing S it is important to
onsider events that may ‘‘cause’’ experimental vari-
nce even if they occurred before the start of scanning.
is a M 3 1 vector of independent variates taking the

alues 0 and 1 with probabilities 1 2 P and P 5 [P1, P2,
. . PM]T, respectively. Note that this formulation allows
or occurrence probabilities that are specific to each of
he M possible occurrences of a trial. The expectation of
TX is given by:

5 7XTX8 5 7bTSTSb8 5 PT(STS 2 D)P

1 o
m

PmDmm . (A.2)

is a diagonal matrix corresponding to diag(STS).
quation (A.2) follows from the fact that the expecta-

ion 7bib j8 5 PiPj unless i 5 j in which case 7bibi8 5 Pi.
he expected efficiency for a contrast of effects c is
iven by

Efficiency , trace5cTC21c621. (A.3)

ogether Eqs. (A.2) and (A.3) give the expected effi-
iency for any contrast of effects in a design specified by
he fixed parameters (SOAmin, basis functions, and
umber of scans) embodied in S and those pertaining to
he probabilistic or stochastic components implied by
. In the general case of multiple basis functions and

rial types the element of C corresponding to the ith
nd jth basis functions for the uth and vth trial types is

PuT(SiTSj 2 diag(SiTSj))Pv 1 o
m

7bm
u bm

v 8Sm
iTSm

j , (A.4)

here Si is the mean corrected basis function matrix for
he ith basis function, Pu is the probability vector for
he uth trial type, and

7bm
u bm

v 8 5 5 pm
u (u 5 v)

0 (u Þ v).

hat 7bm
u bm

v is zero for different trial types follows simply
rom the fact that two trial types cannot occur simulta-
eously.
Other columns in the design matrix may include

xed confounds. The expected value of the elements of
corresponding to the covariance between the regres-

or for the uth event type/ith basis function and any
onfound g is

T i u T i u
7g S b 8 5 g S P . (A.5)
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ote that the constant term has been implicitly in-
luded as a confound above by virtue of the fact that the
olumns of S are mean corrected.
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