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The performance of an experimental design for functional magnetic

resonance imaging (fMRI) can be characterized by its estimation

efficiency, which is the ability to make an estimate of the hemodynamic

response, its detection power, which is the ability to detect an

activation, and its conditional entropy, which is a measure of the

randomness of the design. In Liu and Frank [Neuroimage 21 (2004)

387–400], it is shown that there is a fundamental theoretical trade-off

between estimation efficiency and detection power for experiments with

multiple trial types and that there is an empirical relation between

estimation efficiency and conditional entropy. This paper provides an

intuitive interpretation of the theoretical results and examines the

practical implications of these results for the optimal design of fMRI

experiments with multiple trial types. The properties of block designs,

permuted block designs, m-sequence designs, clustered m-sequence

designs, and mixed designs are explored. It is shown that these designs

nearly achieve the theoretically predicted performance and can be used

in practice to obtain advantageous trade-offs among efficiency, power,

and entropy.
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Introduction

Event-related designs for functional magnetic resonance imag-

ing (fMRI) in which different types of stimuli are presented in

rapid succession have proven to be useful for a wide range of

cognitive experiments, especially in cases where the psychological

confounds, such as habituation and anticipation, associated with

more traditional block designs interfere with the cognitive task

under study. In a companion paper (Liu and Frank, 2004), we

examined the relation between three metrics that are useful for

characterizing the performance of event-related fMRI experiments

with multiple trial types. These are estimation efficiency, which is a
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measure of the ability to estimate the hemodynamic response

function (HRF) in the absence of a priori assumptions about its

shape; detection power, which is a measure of the ability to detect a

functional activation assuming a known HRF; and conditional

entropy, which is a measure of the randomness of a design. It

has been previously shown that there is a fundamental theoretical

trade-off between estimation efficiency and detection power for

experiments with a single trial type (Liu et al., 2001). The finding

in Liu and Frank (2004) is that this trade-off also exists in

experiments with multiple trial types, and in fact the form of the

trade-off is identical to that seen for single trial type experiments.

In addition, an empirical relation between estimation efficiency and

conditional entropy was found, with entropy increasing with the

logarithm of estimation efficiency. Numerical simulations using a

variety of experimental designs were used in Liu and Frank (2004)

to verify the form of the theoretically predicted trade-offs.

The purpose of this paper is twofold. First, we provide an

intuitive presentation of the theoretical results from Liu and Frank

(2004) so as to make them more accessible to the nontechnical

reader. Second, we explore the design of experiments that can be

used to achieve the predicted trade-off in practice. These include

block and permuted block designs, m-sequence and clustered m-

sequence designs, and mixed designs.

Block designs have been previously described in the literature

as designs that can achieve maximal detection power at the price of

low estimation efficiency (Friston et al., 1999; Birn et al., 2002).

We examine the sensitivity of block designs to low frequency

nuisance terms and show that a design consisting of two blocks of

each trial type provides high detection power and good robustness

against nuisance terms. Designs based on m-sequences were

introduced by Buracas and Boynton (2002) and were shown to

offer significantly higher estimation efficiency than designs

obtained via random search, especially as the number of trial types

increases. We review the properties of m-sequence designs and

show that they nearly achieve the theoretical upper bound on

estimation efficiency over a wide range of experiments. Permuted

block designs were introduced in Buxton et al. (2000) as designs

that can offer a wide range of intermediate trade-offs between

estimation efficiency and detection power for experiments with a

single trial type. Here we show that they are also useful for

attaining theoretically predicted trade-offs for experiments with
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multiple trial types. Clustered m-sequence designs are introduced

here as novel designs that can offer additional trade-offs. These

designs take advantage of the optimal estimation efficiency

exhibited by m-sequence designs. Finally, mixed designs can be

formed by combining block designs and m-sequence designs. By

varying the relative lengths of the block and m-sequence designs,

variable trade-offs between efficiency and power can be obtained.

To provide the necessary background for evaluating the various

experimental designs, we begin with an intuitive interpretation of

the results presented in Liu and Frank (2004). The motivated reader

is referred to that article for proofs and additional technical details.

The review of the theoretical results is followed by a detailed

examination of the various experimental designs.
Design theory

Experimental assumptions

In this paper, we consider fMRI experiments with Q trial types

plus an optional null or control condition so that there are up to Q +

1 experimental conditions. The trial types are constrained to be

nonoverlapping in time so that at each time point in the design,

only one trial type may have a stimulus present. For example, in an

experiment with Q = 2 trial types, A and B, plus a null condition N,

the experimental designs are of the form ABBNABN. The stimulus

for each trial type is binary, either on or off, so that the stimulus

may be represented as a binary sequence where 1 denotes the

presence of the trial type and 0 denotes its absence. We assume that

the HRF associated with each trial type can be described by a

vector with k points. As an example, if the HRF is assumed to last

for 20 s and the experimental repetition time (TR) is 1 s, then k =

20. The temporal duration of the HRF can be longer than the

spacing between stimuli from different trial types so that the

responses to different trial types can overlap even though the

stimuli do not. The length of the experiment is equal to the number

of temporal data points acquired and is denoted as N. The

measured signal y[n] is assumed to be equal to the sum of (1)
the time series obtained by convolving the HRF for each trial type

hi[n] with its stimulus pattern xi[n], (2) nuisance terms si[n] to

model the low frequency drifts commonly observed in fMRI

experiments, and (3) a Gaussian noise term e[n], where n denotes

the discrete time index. In mathematical terms, the signal is written

as y½n� ¼
PQ

i¼1 xi½n�*hi½n� þ
Pl

i¼1 bisi½n� þ e½n� , where * denotes

convolution and bi is the coefficient for the ith nuisance term. The

matrix equivalent of this expression is given in Eq. (1) of Liu and

Frank (2004).

Statistical efficiency: detection power and estimation efficiency

The statistical efficiency of an experimental design is inversely

proportional to the variance in the estimates of the parameters of

interest. Increasing the efficiency of a design is equivalent to

either decreasing the time required to obtain an estimate with a

desired level of variance or decreasing the variance of an estimate

given a fixed amount of measurement time. In fMRI experiments,

the types of estimates that are of interest can be roughly divided

into two main categories: estimates of the amplitudes of functional

activation and estimates of the HRFs associated with functional

activation.

Estimates of the activation amplitudes are important in experi-

ments that attempt to detect activation to map areas of functional

activity or to compare levels of activity between brain regions, trial

types, or subjects. We refer to the efficiency of the amplitude

estimates as detection power. This nomenclature is consistent with

the formal definition of statistical power as the probability of

detection when an activation is present and the fact that power

decreases monotonically with increases in variance. For experi-

ments with detection as a focus, the shape of the HRF is not

typically of interest and a prototypical HRF with unknown ampli-

tude is used in the statistical analysis. For each trial type, a

statistical test is performed on the estimate of the unknown

amplitude with the power of the test given by the inverse of the

variance of the amplitude estimate. Similar tests may be performed

on all pairwise contrasts. The overall detection power is then

defined as
Rtot ¼
K

ðaverage variance of HRF amplitude estimates for all trial types and pairwise contrastsÞ ð1Þ
where K = (h̄0
Th̄0)

�1 is a normalization constant and h̄0 is the

shape of the HRF, which is assumed to be the same across trial

types. As an example, the detection power for an experiment with

two trial types, A and B, is given by Rtot = K[(var(l̂A) + var(l̂B)
+ var(l̂A � l̂B))/3]

�1, where l̂A and l̂B are the amplitude

estimates.
Estimates of the HRFs are important for experiments that

attempt to characterize the functional response to patterns of brief

stimuli. For example, measurements of the responses to brief

stimuli can provide insights into the physiology of the fMRI

response (Miller et al., 2001). We refer to the efficiency of the

HRF estimates as estimation efficiency and define it as
ntot ¼
1

ðaverage variance of HRF estimates for all trial types and pairwise contrastsÞ ð2Þ
For the two-trial-type example, the efficiency is ntot = [(var(ĥA)

+ var(ĥB) + var(ĥA � ĥB))/3]
� 1, where ĥA and ĥB are the estimates,

var(ĥA) is defined as the sum of the variances of the estimates of

the k unknown parameters of the HRF for trial type A, and var(ĥB)

and var(ĥA � ĥB) are similarly defined.
In examining estimation efficiency, it is important to make a

distinction between unbiased and biased estimates of the HRF. An

unbiased HRF estimate makes no a priori assumptions about the

shape of the HRF except for its temporal length and results in the

definition of estimation efficiency used in Liu and Frank (2004)
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and Liu et al. (2001). Since no assumptions are made about the

HRF, the expressions for estimation efficiency depend only on the

experimental design. Biased estimates take advantage of the fact

that although the exact shape of the HRF can vary greatly across

subjects (Aguirre et al., 1998), the basic form of the HRF is a

smooth function with a full width half maximum of about 5 to 6 s.

One method for using this a priori knowledge is to constrain the

HRF to lie in a subspace spanned by a set of smooth basis

functions, such as a set of gamma density functions plus their

temporal derivatives (Friston et al., 1998). The use of basis

functions leads to a generalized definition of estimation efficiency

with two important limiting cases. In the first case, if we assume

full knowledge of the shape of the HRF, then there is only one

basis function equal to h̄0 and the generalized estimation efficiency

is equal to detection power, as shown in Appendix A5 of Liu and

Frank, 2004. In the second case, if the number of basis functions is

equal to the number k of unknown parameters in the HRF, then the

generalized estimation efficiency is equal to the estimation effi-

ciency for an unbiased estimate. Thus, detection power and

estimation efficiency for an unbiased estimate are two measures

of statistical efficiency that differ only in the amount of a priori

information that is assumed about the HRF. For the purposes of

this paper, we use the term estimation efficiency to refer to the

efficiency for an unbiased estimate.

Conditional entropy

The perceived randomness of an experimental design is an

additional factor to consider in many fMRI experiments, especially

those involving complex cognitive tasks. Randomness can be

critical for minimizing confounds, such as anticipation and habit-

uation, which can arise when a subject can too easily predict the

evolution of the stimulus pattern. For example, a decision-making

task in which a subject is choosing between several outcomes

could be hampered if the subject can readily predict the most

advantageous outcome based on the history of previous trials.

Conditional entropy is a fundamental and widely used metric for

the randomness of a sequence (Cover and Thomas, 1991). As

discussed in Liu and Frank (2004), it is related to other measures

of randomness, such as predictability, mutual information, and

counterbalancing, that have been previously presented in the fMRI

literature (Bischoff-Grethe et al., 2001; Liu et al., 2001; Wager and

Nichols, 2003). The rth-order conditional entropy Hr is a measure

of the uncertainty in the next trial type given knowledge of the

previous r trial types. A formal definition is provided in Eq. (28)

of Liu and Frank (2004) and in Appendix A. Conditional entropy

is measured in bits and is equal to the average number of binary

(e.g., yes or no) questions required to determine the next trial type

given the r previous trials (Cover and Thomas, 1991). A condi-

tional entropy of 0 bits corresponds to a sequence in which the r

previous trial types completely determine the next trial type. For

an experiment with Q trial types, the maximum conditional

entropy is equal to log2(Q + 1) bits. This corresponds to a

completely random sequence where each of the Q + 1 experimen-

tal conditions (i.e., Q trial types plus null condition) is equally

probable given knowledge of the r previous trial types. As an

example, the maximum conditional entropy for an experiment with

three trial types is 2 bits, corresponding to a series of two questions

of the form—Is the next trial type either trial type A or B? If it is

either A or B, is it trial type A, and if it is neither A nor B, is it trial

type C?
In comparing the entropy of different designs, it is convenient

to use the quantity 2Hr, which is a measure of the average number

of random outcomes. For example, an entropy of 1 bit corresponds

to 21 = 2 equally probable outcomes, while an entropy of 2 bits

corresponds to 22 = 4 equally probable outcomes. Thus, a design

with an entropy of 2 bits is twice as random as a design with an

entropy of 1 bit, and the quantity 2Hr serves as a linear measure of

randomness.

The entropy of a design can vary significantly over its time

course. For example, in the Design section, mixed designs are

shown to exhibit areas of both high and low entropy. To assess the

performance of such designs, it is useful to define a metric for local

conditional entropy. This is a running measure of conditional

entropy where the local entropy at time point n in the design is

the entropy computed over a temporal window of widthW centered

about n.

Relation among estimation efficiency, detection power, and

conditional entropy

It was shown in Liu et al. (2001) that there is a fundamental

trade-off between estimation efficiency and detection power for

experiments with one trial type of interest. Experimental designs,

such as random designs, that optimize estimation efficiency yield

low detection power, while designs, such as block designs, that

achieve high detection power provide low estimation efficiency.

Semirandom and mixed designs lie in between block and random

designs and can offer a range of intermediate trade-offs between

efficiency and power. For example, a semirandom design can offer

a 100% increase in detection power with only a 20% decrease in

estimation efficiency as compared to a random design optimized

for estimation efficiency (Liu et al., 2001).

In the companion paper Liu and Frank (2004), the theoretical

framework is extended to show that the fundamental trade-off

between estimation efficiency and detection power also holds for

experiments with multiple trial types. In fact, the form of the

relation between efficiency and power was found to be identical to

that previously presented for experiments with a single trial type,

with the shape of the trade-off curves depending only on k, the

number of parameters in the HRF. The theoretical model predicts

fairly well the trade-off observed for Q = 2 trial types, but as the

number of trial types increases, it becomes increasingly difficult to

find designs that achieve the predicted trade-off, as shown in Fig. 1

of Liu and Frank (2004). A discussion of novel designs that can

come closer to achieving the theoretical trade-off is provided in the

Design section.

Based on the results of numerical simulations, Liu and Frank

(2004) found that conditional entropy and estimation efficiency

exhibited the empirical relation Hr c log2(1 + Qntot,norm), where
ntot,norm is the total estimation efficiency normalized by its theo-

retical upper bound. Examples of the empirical relation are shown

in Figs. 3 and 4. The empirical relation works well for first- and

second-order conditional entropies but does not hold in some

instances for third-order conditional entropies. The reasons for this

are discussed in Liu and Frank (2004) and below in m-Sequence-

based designs. The empirical relation between conditional entropy

and estimation efficiency states that a reduction in estimation

efficiency is accompanied by a reduction in conditional entropy.

Since there is a fundamental trade-off between estimation efficien-

cy and detection power, this empirical relation implies a similar

trade-off between conditional entropy and detection power.



Fig. 1. Generation of permuted block designs.
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The fundamental trade-off between estimation efficiency and

detection power does not hold when a priori knowledge about the

HRF in the form of basis function expansions is assumed. As shown

in Appendix A6 of Liu and Frank (2004), the upper bound on the

generalized definition of estimation efficiency with basis functions

is greater than the bound on the estimation efficiency for an

unbiased estimate by a factor of k2/s2, where s is the number of

basis functions, which is assumed to be less than or equal to k. In

addition, the design that maximizes estimation efficiency with basis
Fig. 2. Effect of nuisance functions on detection power for block designs with 1,

labeled by the highest order of Legendre polynomial used.
functions is in general less random than the design that maximizes

estimation efficiency and therefore exhibits decreased conditional

entropy and increased detection power with respect to the random

design. As a result, as we migrate from a random design to a

semirandom design, both estimation efficiency with basis functions

and detection power increase until a maximum in the estimation

efficiency with basis functions is reached, after which the estima-

tion efficiency with basis functions decreases as detection power

increases (see for example Fig. 3 of Liu and Frank (2004)).
2, 4, and 8 (Q = 2, 4, and 5) or 10 (Q = 3) blocks. The horizontal axis is



Fig. 3. Estimation efficiency, detection power, and second-order conditional entropy for a two-block design, permuted block designs, m-sequence design,

clustered m-sequence designs, and mixed designs for experiments with two trial types. For permuted block and clustered m-sequence designs, the minimum,

n.
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Optimal frequency of occurrence

A first step in the design of an experiment is to determine the

optimum number of stimuli to use. The frequency of occurrence p

median, and maximum detection power of 1000 permutation paths are show
Fig. 4. Estimation efficiency, detection power, and second-order conditional entr

clustered m-sequence designs, and a mixed designs for experiments with four trial

median, and maximum detection power of 1000 permutation paths are shown.
is defined as the number of stimuli for a trial type divided by the

total number of points in the experimental design. For a random

design, it is the probability of occurrence of a stimulus. If we

assume the same frequency of occurrence for all trial types, then it
opy for a two-block design, permuted block designs, m-sequence design,

types. For permuted block and clustered m-sequence designs, the minimum,



Fig. 5. Estimation efficiency and conditional entropy of m-sequence-based designs for 1, 2, 3, 4, 6, 7, 8, 10, and 12 trial types.
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can be shown that the frequency of occurrence that maximizes both

estimation efficiency and detection power is p = 1/(Q + 1), where

Q is the number of trial types (Liu and Frank, 2004). For example,

in an experiment with two trial types, the optimal frequency of

occurrence for each trial type is p = 1/3. The optimality of p =

1/(Q + 1) has been previously stated using the concept of null

events (Burock et al., 1998; Friston et al., 1999). In some experi-

ments, it may be advantageous to modify the definitions of

estimation efficiency and detection power to adjust the relative

weights of individual trial types and pairwise contrasts. The

optimal frequency of occurrence then depends on the relative

weighting. For example, if we are interested only in estimating

the HRFs or detecting activations for individual trial types, then the

optimal frequency is p ¼ ðQ�
ffiffiffiffi
Q

p
Þ=ðQ 2 � QÞ for Q > 1. On the

other hand, if we are interested only in estimating the pairwise

contrasts between HRFs or detecting pairwise contrasts of activa-

tions, then the optimal frequency is p = 1/Q. For an experiment

with two trial types, the optimal frequency is 0.2929 when only

individual trial types are of interest and 0.5 when only pairwise

contrasts are of interest. For other relative weightings, the formula

for the optimal frequency of occurrence is stated in Eq. (23) of

Liu and Frank (2004). To simplify the presentation, we assume

p = 1/(Q + 1) for the remainder of the paper.

Bounds on estimation efficiency and detection power

In the search for optimal designs, knowledge of the upper bounds

on performance is useful in deciding when to terminate the search.

In Eqs. (26) and (27) of Liu and Frank (2004), it is shown that the

upper bounds on estimation efficiency and detection power are

ntotVb=k and RtotVbk ð3Þ
where b = N/(2(Q + 1)). The upper bounds increase with the length

N of the experiment, reflecting the improved statistical efficiency

obtained by acquiring more data. The bounds are inversely propor-

tional to the number of trial types Q, reflecting the reduction in data

per trial type as the number of types increases. The bound on

estimation efficiency decreases with the number of unknown

parameters k in the HRF. This reflects the increase in the variance

of each HRF estimate, which is the sum of the variances of the k

parameter estimates. In contrast, the bound on detection power

increases with k, reflecting the fact that the maximum obtainable

energy of the time series obtained by convolving the stimulus

convolved with the HRF increases with the temporal width of the

HRF (Liu et al., 2001). This is most easily understood by consid-

ering a block design convolved with a fictitious HRF composed of

all 1’s. As the length of the HRF increases, the overlap between the

responses to adjacent stimuli increases and the overall energy of the

resulting signal also increases.

As shown below, it is possible in practice to come quite close

to the theoretical upper bound on estimation efficiency using m-

sequence-based designs. It does not, however, appear possible to

obtain the upper bound on detection power. To understand why

this is the case, we need to consider two questions: (1) For an

assumed HRF, what is the experimental design that maximizes

detection power; and (2) for a given design, what is the HRF that

maximizes detection power? For the HRFs typically encountered

in fMRI (e.g., a gamma density model), it has been shown that

detection power is maximized by experimental designs that

concentrate most of their energy at low frequencies (Birn et al.,

2002). For example, in a one-trial-type (Q = 1) experiment, a

block design with only one on or off period maximizes detection

power when the only nuisance term is a constant term (Liu et al.,

2001). To answer the second question, the intuition is that
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detection power is maximized by an HRF with most of its

spectral energy centered about the fundamental frequency of the

stimulus. In more technical terms, the HRF that maximizes

detection power is equal to the dominant eigenvector associated

with the design (Liu and Frank, 2004; Liu et al., 2001). For a low

frequency block design, this eigenvector has the property that it

attempts to concentrate its energy around the fundamental fre-

quency of the stimulus. The gamma density HRF model has a

much broader bandwidth than the dominant eigenvector and thus

yields significantly lower detection power. This effect can be

approximated with the bound

RtotVbkcos2hmin ð4Þ

where hmin is empirically defined as the angle between the

assumed HRF (e.g., gamma density model) and the dominant

eigenvector for a design with only one on-off period. In practice,

we have found that hmin = 45j yields a reasonable empirical

bound. Additional technical details of the above arguments are

provided in Liu and Frank (2004) and Liu et al. (2001).
Experimental designs

In the following sections, we describe some approaches to

designing experiments that attempt to achieve the theoretically

predicted trade-off between estimation efficiency and detection

power.

Block designs

Block designs in which stimuli from the same trial type are

clustered into blocks are typically used in experiments where the

detection of activation is the primary goal. As shown in Figs. 3

and 4, the estimation efficiency and conditional entropy of these

designs are very low. For a given experiment length N, a block

design can be characterized by the number of blocks B of each

trial type that are present, with the number of events in each block

equal to N/B/(Q + 1). An example of a two-block design for an

experiment with two trial types is shown in the top row of Fig. 1.

The experiment length is N = 90 and each block contains 15

events.

In choosing the optimal number of blocks, an important consid-

eration is the robustness of the detection power of the design to the

presence of nuisance terms that model the low frequency drifts

commonly observed in fMRI data. A design is robust when it is

nearly orthogonal to the nuisance terms (Liu et al., 2001). Fig. 2

shows the detection powers for designs with experimental lengthN =

240, two to five trial types, and 1 to 10 blocks per trial type, plotted

versus the number of nuisance terms used. Panel d shows the

performances for a 10-block design for Q = 3 and 8-block designs

for Q = 2, 4, and 5. Consistent with the simulations described in Liu

and Frank (2004), the time scale of the simulations in this and

following sections is Dt = 1 s and the HRF is a gamma density

function of the form h[ j] = (sn!)� 1(( j � 1)Dt/s)ne �jDt/s for j z 1

and 0 otherwise, where n = 3 and s = 1.2. The low frequency

nuisance terms are chosen to be Legendre polynomials of orders 0

to 3, with the increasing orders corresponding to a constant term, a

linear term, a quadratic term, and a cubic term. The Legendre

polynomials are the orthogonalized version of the regular poly-

nomials commonly used in fMRI analyses (Cox, 1996) and thus
span the same subspace as the regular polynomials. The horizontal

axis is labeled by the order of the highest Legendre polynomial

used so that when the highest order is 3, polynomials of orders 0 to

3 are used as nuisance terms. Another commonly used set of

nuisance terms are the low frequency sine and cosine functions

(Friston et al., 1995). The detection powers of the one-block

designs decrease rapidly as the number of nuisance terms increases,

while the detection powers of the two- and four-block designs

decrease only slightly. Overall, the two-block designs offer higher

detection power than the four-block designs and are thus preferred

from the point of view of statistical efficiency. However, other

factors, such as subject fatigue or habituation may factor into the

selection of the optimal number of blocks. For example, with N =

240 and two trial types, the two-block design with 40 events per

block may lead to habituation effects that are decreased by going to

a four-block design with 20 events per block.

Permuted block designs

Because of their high detection power, block designs are a good

starting point for generating designs that attempt to optimally

decrease detection power in exchange for an increase in estimation

efficiency. A straightforward approach is to begin with a block

design and obtain new designs by exchanging the positions of two

randomly chosen events (Buxton et al., 2000). The events are

chosen without regards to the trial type of the event. With each

iteration, the designs become increasingly random. A graphical

description of this method is shown in Fig. 1 and an additional

example is shown in Fig. 7.

The performance of permuted block designs for experiments of

length N = 240 with two and four trial types is shown in Figs. 3 and

4, respectively. The initial starting point for the iteration process is a

two-block design, which was chosen because of its robustness to

nuisance terms, as compared to the one-block design. Each iteration

path consisted of 100 iteration steps, and a total of 1000 unique

iteration paths were generated. In other words, each of the 1000

iteration paths started with the same two-block design but followed

a different trajectory of random permutations. To reduce the number

of points plotted, the estimation efficiencies are divided into 150

equally spaced bins and the minimum, median, and maximum

detection powers for a subset of these bins are plotted. The metrics

are normalized by the theoretical upper bounds stated in Eq. (3).

Curves showing the predicted trade-off between estimation effi-

ciency and detection power are also shown. These are computed

using the equations provided in Appendix Awith the angle h equal

to 45j and 47.5j for two and four trial types, respectively. The

choice of angle is empirical and meets two criteria: the maximum

theoretical detection power is greater than the maximum observed

detection power, and the slope of the predicted trade-off is approx-

imately equal to the slope of the observed trade-off in the region

near the maximum observed detection power.

For the experiment with two trial types shown in Fig. 3, the

increase in estimation efficiency as the maximum detection power

per bin decreases is very close to the predicted trade-off for

normalized efficiencies up to 0.8. For higher normalized efficien-

cies, the gain in efficiency as detection power decreases is less

than predicted. For the experiment with four trial types shown in

Fig. 4, the predicted trade-off is closely approximated for effi-

ciencies up to 0.4. This represents an increase in performance over

the permuted two-block design shown in Fig. 1 of Liu and Frank

(2004) where only one randomly chosen iteration path was



Fig. 6. Generation of clustered m-sequence designs.
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displayed. Thus, searching over a large enough space of iteration

paths is a critical factor in attaining designs that come closer to the

predicted trade-off. For the two- and four-trial-type experiments, a

search over 100 iteration paths (results not shown) provided only

slightly less performance than the search over 1000 iteration

paths.

As shown in Fig. 4, the maximum normalized estimation

efficiency obtained by the permuted two-block designs with four
Fig. 7. Stimulus patterns of m-sequence, clustered m-sequence, permuted block

conditional entropy.
trial types is about 0.8, which is close to the maximum

efficiency obtained by a search over 1000 random designs

shown in Fig. 1 of Liu and Frank (2004). This observation is

consistent with the fact that as the number of iterations

increases, the permuted block design approaches a random

sequence. The implication for experimental design is that the

maximum achievable efficiency obtainable by permuted block

designs will be similar to that of random designs. As shown in
, and mixed designs for two trial types and first- and second-order local



Fig. 8. Stimulus patterns of m-sequence, clustered m-sequence, and mixed designs for four trial types and first- and second-order local conditional entropy.
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Fig. 1 of Liu and Frank (2004), the maximum normalized

efficiency achievable with random designs drops as the number

of trial types increases, thus limiting the ability of permuted

block designs to achieve the predicted trade-off when the desired

estimation efficiency is high. This limitation can be partially

addressed with the m-sequence and clustered m-sequence

designs discussed in the next two sections.

m-Sequence-based designs

Experimental designs based on maximal length sequences or m-

sequences were introduced into the fMRI literature by (Buracas and

Boynton, 2002). These designs were shown to exhibit significantly

greater estimation efficiency than designs obtained via random

search, especially as the number of trial types increased. The gain

in efficiency is due to the fact the m-sequences have nearly ideal

temporal autocorrelation properties so that a shifted m-sequence is

nearly orthogonal to the original sequence. A design for Q trial

types is generated from an m-sequence with L = Q + 1 levels. For

example, a three trial type experiment would be generated from a

four-level m-sequence of the form . . .0, 1, 3, 2, 0, 3, 1, 2,. . .where 0
is assigned to the null condition and each of the three trial types is

indexed by the positive numbers in the m-sequence.

m-Sequences are known to exist when the number of levels L is

either a prime or a power of a prime (Godfrey, 1993). An L level

m-sequence of length Ln � 1 is generated using an L-level shift

register bank with n stages and appropriate feedback taps. For

example, a three-level shift register (ternary logic) with five stages
is used to generate a three-level m-sequence of length 242, while a

four-level shift register with four stages is used to generate a four-

level m-sequence of length 255.

An alternative method of generating m-sequence-based

designs when L is a power of a prime is to use hybrid sequences

constructed from the integer weighted sum of shifted prime level

sequences (Buracas and Boynton, 2002). For example, a four-

level hybrid sequence mhybrid[n] can be constructed from the

weighted sum mhybrid[n] = 2m[n] + m[n + M] of shifted two-

level m-sequences m[n] and m[n + M], where the appropriate

shift M is chosen empirically. This method has the advantage of

increasing the number of designs that are available for selection.

The conditional entropy of the hybrid sequences appears to be

slightly lower, however, than that of the power of prime m-

sequences, and a more detailed comparison of the two

approaches would be useful. Examples of m-sequence designs

are shown in Figs. 6–8.

To demonstrate the performance of m-sequence-based designs,

we constructed m-sequences with Q = 1, 2, 3, 4, 6, 7, 8, 10, 12 and

corresponding lengths N = 255, 242, 255, 624, 342, 511, 728,

1330, and 2196. These were computed using MATLAB codes

described in Buracas and Boynton (2002) for Q = 1, 2, and 4 and

algorithms detailed in Godfrey (1993) for Q = 3, 6, 7, 8, 10, and

12. We are not aware of m-sequence-based designs for Q = 5, 9,

and 11. Fig. 5a shows the estimation efficiencies of the designs.

Also plotted are the theoretical upper bound on estimation effi-

ciency b/k and an approximate bound on efficiency MA( p,N)b/k
2

where MAðp;NÞ ¼
Pk

q¼1 pð1� pð1� ðq� 1Þ=NÞÞðN � ðq� 1ÞÞ
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was derived in (Liu et al., 2001). The approximate upper bound

accounts for the fact that some small fraction of events are shifted

out of the design matrix during the convolution process, whereas

the theoretical upper bound assumes that no events are shifted out.

Note that all quantities are normalized by the upper bounds. The

estimation efficiencies of the m-sequence-based designs attain at

least 97% of the upper bound. The closeness to the bound depends

in part on the length of the design used, since in longer designs

fewer events are shifted out of the design matrix. This dependence

on length is shown by the behavior of the approximate bound,

which is a function of both the frequency of occurrence p and the

length N.

Fig. 5b shows the first- through third-order conditional entro-

pies of the designs normalized by the upper bound log2(Q + 1).

The first- and second-order conditional entropies are all at least

99.5% of the upper bound. The third-order conditional entropies

are at least 99% of the upper bound for experiments with up to

four trial types but are identically zero for designs with 6 to 12

trial types. This reflects the fact that the m-sequences for the zero

entropy designs are all based on three-stage shift registers so that

knowledge of the three previous trial types completely determines

the next trial type. In addition, it is important to note that entropy

is not a function of the number of trial types since a shorter four-

trial-type design with length 124 based on a three-stage shift

register would also have a third-order conditional entropy equal to

zero, as shown in Fig. 2 of Liu and Frank (2004). In practice, we

expect that the theoretical third-order entropy grossly underesti-

mates the perceived entropy of the design. For example, the

theoretical third-order entropy of the six trial design is based on

perfect memory of which trial type followed each of 73 = 343

combinations of three previous trial types, including the possibil-

ity of a null condition. Since a subject is unlikely to remember so

many combinations, the perceived entropy will probably be

higher than the theoretical entropy. A reasonable but untested

conjecture is that the first- and second-order conditional entropies

are sufficient to characterize most designs with four trial types or

less (a maximum of 25 combinations), while for designs with

more than four trial types, the first-order conditional entropy is

probably sufficient.

Clustered m-sequences

Because m-sequences offer nearly ideal estimation efficiency,

they serve as a good starting point for designs that attempt to

optimally decrease estimation efficiency to increase detection

power. In this section, we describe a method for randomly

permuting an m-sequence to generate a new type of sequence that

we call a clustered m-sequence. The basic idea behind the approach

is to increase the clustering of events of the same trial type at each

cycle of the permutation process.

The steps of the process are as follows:

Step 1. Find the smallest hole for this trial type. A hole is

defined as a gap between successive events of the same trial

type. For example, a sequence of the form . . .BCAA
CBAAA. . . has a hole of size 2 between the blocks of trial

type A. If there is more than one hole with the smallest size,

randomly pick one of these holes.

Step 2. Find a filler for the hole. First, look for all singletons

of this trial type, where a singleton is defined as an event with

no adjacent events of the same trial type. For example, in the
sequence BBBACABCAA, the first two events of trial type A

are considered to be singletons. Find the singleton that is

farthest away from any other event of this trial type, randomly

picking a singleton if there is a tie. The singleton that is

picked is the filler for the hole. If no singletons exist, then find

the smallest blocks of events with this trial type. For example,

in the sequence BBBAACAAABCCBAAB, the first and third

blocks of events with trial type A are of length 2 and have the

smallest size. From the population of smallest blocks, pick the

block that is farthest away from the closest adjacent block

(which can be of any size), and then randomly pick an event

within the block to be the filler. If there is more than one

block with the smallest size, randomly pick one of these

blocks.

Step 3. Fill in the hole. Exchange the trial type of the hole with

the trial type of the filler. For example, in a sequence of the

form BBCAABAACBCA, the hole for trial type A is at event

number 6 and the filler is the last event at position 12. After the

exchange, event number 6 has trial type A, while event number

12 has trial type B.

Step 4. Using the next trial type, go to Step 1.

A graphical description of the clustering process is shown in

Fig. 6. The top row shows a two-trial-type design based on a

three-level m-sequence of length 80. At the first iteration, a

hole of trial type A is filled; and at the second iteration, a hole

of trial type B is filled. As the number of iterations increases,

the clustered m-sequences become more block-like. Additional

examples of clustered m-sequence designs are shown in Figs. 7

and 8.

The performance of clustered m-sequence designs for experi-

ments of length N = 240 with two and four trial types is shown in

Figs. 3 and 4, respectively. For the two-trial-type designs, the

starting point for the clustering process is a three-level m-sequence

of length 242 that is truncated to 240 points. For the four-trial-type

designs, the starting point is a five-level 124-point m-sequence that

is repeated and then truncated to 240 points. The estimation

efficiencies of the m-sequence designs are slightly lower than

those for the designs shown in Fig. 5, which were not truncated

to 240 points. Each clustering path consisted of 30 iterations, and a

total of 1000 clustering paths were generated. Other details, such as

the method used to reduce the number of displayed points and the

generation of the theoretical curves, are described in the section on

permuted block designs.

For the experiment with two trial types, the increase in the

detection power as the estimation efficiency decreases approx-

imates the predicted optimal trade-off down to a normalized

efficiency of 0.9. Below that, the detection power does not

increase as quickly as predicted. For most of the region where

the clustered m-sequences do not perform well, the permuted

block designs approximate the predicted trade-off so that the

combination of clustered m-sequences and permuted block

designs provides nearly optimal performance over the entire

range of estimation efficiencies.

For the experiment with four trial types, the clustered m-

sequences offer a range of estimation efficiencies and detection

powers that are not achievable with the permuted block designs

but fall short of attaining the optimal trade-off. For example, at a

normalized estimation efficiency of 0.8, the highest detection

power achieved by a clustered m-sequence is about 30% lower

than the predicted maximum detection power.
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Mixed designs

A mixed design is formed by concatenating a block design

with a semirandom design, such as a permuted block design or a

clustered m-sequence design (Liu et al., 2001). The simplest

mixed design is obtained by concatenating a block design with

an m-sequence design. The idea is that the block design con-

tributes high detection power, while the m-sequence design

contributes high estimation efficiency. By varying the relative

lengths of the block and m-sequence designs, different trade-offs

between estimation efficiency and detection power can be

obtained.

To demonstrate the performance of mixed designs, a series of

designs for the two- and four-trial-type experiments were generated.

Each design consisted of an m-sequence design followed by either a

one- or two-block design. The length LB of the block design was

varied from (Q + 1) to N in steps of Q + 1 with N = 240 points. The

corresponding length of the m-sequence design was N � LB.

Examples of mixed designs using a one-block design are shown in

Figs. 7d and 8c for Q = 2 and 4 trial type experiments, with LB = 57

and 60, respectively.

The performance of the mixed designs is shown in Figs. 3 and

4. For two-trial-type designs, the one-block mixed designs

provide slightly better performance than the clustered m-sequence

and permuted block designs for a normalized efficiency of about

0.85. For four-trial-type designs, the one-block mixed designs

provide significantly better performance than both the clustered

m-sequence and permuted block designs for normalized efficien-

cies ranging from 0.4 to 0.85, while the two-block mixed designs

exhibit significantly smaller increases in performance for nor-

malized efficiencies of 0.6 to 0.75. The excellent performance of

the one-block mixed designs must be weighed, however, against

their sensitivity to nuisance terms. As shown above, the detection

power of one-block designs decreases rapidly as the number of

nuisance terms increases, and one-block mixed designs inherit

some of this sensitivity. When the highest order nuisance term is

a linear term, the detection power of the one-block mixed

designs decreases significantly from what is shown in Fig. 4

for normalized efficiencies below 0.3 (results not shown). With

higher order terms (quadratic and cubic) included, the decrease in

detection power occurs for normalized efficiencies below about

0.75. In contrast, the detection power of the two-block mixed

designs is robust to nuisance terms over the entire range of

performance.

With the use of the one-block mixed designs constrained to

regions (normalized efficiencies greater than 0.75) where they are

robust to nuisance terms, the addition of both the one- and two-

block mixed designs to the clustered m-sequence and permuted

block designs provides a selection of designs for four trial types

that comes very close to providing the predicted trade-off obtained

with h = 47.5j (see Permuted block designs for choice of this

angle) over the entire range of normalized estimation efficiencies.

In other words, it appears that the theoretically predicted trade-off

can serve as an accurate guide for what can be achieved in

practice.

In considering the usefulness of mixed designs in attaining

optimal trade-offs, one additional point must be considered. This

is the fact that the local conditional entropy of mixed designs

varies greatly over the time course of the design. Figs. 7 and

8 show examples of m-sequence designs, clustered m-sequence

designs, and mixed designs for two and four trial types,
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respectively. In addition, a permuted block design is shown for

the two trial types. The clustered m-sequence designs, mixed

designs, and permuted block designs were all chosen to have a

normalized estimation efficiency of about 0.8. For two trial

types, the clustered m-sequence, permuted block design, and

mixed design all provide at least twice the detection power of

the m-sequence design with less than a 10% decrease in overall

randomness. For four trial types, the clustered m-sequence and

mixed design yield 57% and 100% increases in detection power,

respectively, with a 20% decrease in overall randomness. The

conditional entropy of the mixed designs reflects an average of

high conditional entropy due to the m-sequence portion of the

design and low conditional entropy due to the block design

portion. This is shown in the plots of first- and second-order

local conditional entropy where a window width of W = 40 was

assumed. The mixed designs show a significant decrease in local

entropy during the block design portion, while the clustered m-

sequence and permuted block designs exhibit a smaller variation

of local entropy around their respective average values. The

large variance in local entropy may make the mixed designs

unsuitable for certain experiments despite the advantages they

offer in terms of statistical efficiency.
Discussion

In this paper, we have examined the design of multiple trial

type fMRI experiments that attempt to achieve an optimal

trade-off between estimation efficiency, detection power, and

conditional entropy. Block designs offer maximal detection

power but low estimation efficiency and conditional entropy,

while m-sequence designs offer nearly optimal estimation effi-

ciency and conditional entropy but low detection power. Inter-

mediate trade-offs between estimation efficiency and detection

power can be obtained with permuted block designs, clustered

m-sequence designs, and mixed designs. For two- and four-

trial-type experiments, these designs were shown to closely

approach the theoretically predicted trade-off over the entire

range of estimation efficiencies. As an example of an advan-

tageous trade-off, it was shown that for a two-trial-type

experiment, a permuted block design could provide over twice

the detection power of an m-sequence design with only a 10%

decrease in randomness and a 20% decrease in estimation

efficiency. Such a design would be useful for an experiment

in which detection power is the primary goal, but a high degree

of randomness is needed to reduce psychological confounds

such as anticipation.

While the design methods presented are generally applicable

to experiments with any number of trial types and any length,

there are some limitations that could be addressed by future

investigations. m-Sequence-based designs currently exist only for

experiments where Q + 1 is either a prime number or a power of

a prime number. Thus, designs based on m-sequences, such as

clustered m-sequence and mixed designs, do not exist for experi-

ments with Q = 5, 9, or 11 trial types. For such experiments, it is

unlikely that a random search will yield a design with optimal

estimation efficiency because of the extremely large number of

possibilities, for example, 5.7 	 10186 possible sequences for a

240-point design with five trial types (Buracas and Boynton,

2002). Other approaches, such as genetic algorithms (Wager and

Nichols, 2003), may be useful for obtaining a design with optimal
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efficiency. m-Sequence designs are also restricted to experimental

lengths (Q + 1)r � 1, where r is the number of stages in the shift

register. In practice, this is not too severe of a restriction because

m-sequence designs appear to maintain most of their estimation

efficiency even when they are truncated. For example, the

estimation efficiency of mixed designs, which provide nearly

optimal trade-offs, is due primarily to the estimation efficiency

of truncated m-sequence designs.

As the number of trial types grows, it may become more

difficult to find clustered m-sequence and permuted block designs

that achieve advantageous trade-offs. The methods described in

this paper for generating these designs may not be the most

efficient for searching the space of possible designs, and it is

possible that other approaches such as genetic algorithms, dynamic

stochastic designs (Friston et al., 1999), varying of minimum block

durations (Birn et al., 2002), or some combination of all these

techniques may provide better performance. For example, the

performance of a genetic algorithm that occasionally inserts m-

sequences and block designs into the population of designs would

be interesting to investigate.

The metrics for estimation efficiency and detection power were

defined using the variances of all individual trial types and all

unique pairwise contrasts between trial types. With this definition,

the optimal frequency of occurrence is p = 1/(Q + 1), where the

same frequency for each trial type is assumed. For other weight-

ings of individual trial types versus pairwise contrasts, the optimal

frequency is different, with a frequency of occurrence greater than

1/(Q + 1) as pairwise contrasts are weighted more heavily and a

frequency less than 1/(Q + 1) as individual trial types are

weighted more heavily. In some cases, only a small subset of

estimates may be of interest, and the restriction that all trial types

have the same frequency of occurrence may not be appropriate.

For example, in a five-trial-type experiment where only estimates

for trial types A, B, and C and pairwise contrasts D–E and A–E

are of interest, optimal statistical efficiency may be achieved when

the individual trial types have different frequencies of occurrence.

While an extension of the theoretical framework of Liu and Frank

(2004) to calculate the optimal frequency of occurrence per trial

type would be useful, the assumption of the same frequency of

occurrence across trial types is probably not too restrictive in

practice and should serve as a good starting point for most

designs.

It was shown that significant gains in detection power can be

obtained if a decrease in conditional entropy is acceptable. Further

work is required to determine how much entropy is required to

sufficiently minimize psychological confounds. In addition, as

discussed in the section on m-sequence designs, the theoretical

entropy is probably lower than the perceived entropy, especially as

the number of trial types increases. A comparison of the theoretical

and perceived entropies of sequences would be useful and would

potentially allow the experimenter to accept greater decreases in

theoretical entropy.

The examples in this paper have assumed that estimation

efficiency is calculated without the use of basis function expan-

sions and that the additive noise is uncorrelated. As shown in Liu

and Frank (2004), the assumption of either basis function expan-

sions for the HRF or correlated noise modifies the trade-off

between estimation efficiency and detection power so that inter-

mediate designs, such as clustered m-sequences and permuted

block designs, can provide both higher detection power and

estimation efficiency than obtained by m-sequence designs. The
form of the trade-off depends, however, on the assumptions the

experimenter is willing to make regarding the choice of basis

functions and the model for noise correlation. In practice, it may be

difficult to make a set of assumptions that are appropriate for all

subjects involved in a study. For example, the form of correlated

noise can show great variance across subjects and even experi-

mental runs (Buracas and Boynton, 2002). As a result, selecting an

optimal design with a minimum of assumptions may prove to be

the best overall strategy, especially if the goal is to balance

conditional entropy versus detection power while ignoring estima-

tion efficiency. This is because conditional entropy does not

depend upon the assumptions, while detection power already

assumes a known HRF and is to first order just scaled by a

constant that depends on the noise correlation and the assumed

HRF (Liu and Frank, 2004).

Together with the theoretical framework established in Liu and

Frank (2004), the designs described in this paper provide a starting

point for selecting the design that is optimal for a specific

experiment. In practice, the choice of an optimal design requires

numerical simulations that allow the experimenter to explore the

various trade-offs involved and to assess the impact of experimen-

tal assumptions regarding nuisance terms, additive noise, and the

shape of the HRF. To facilitate this process, a MATLAB toolbox

for the design of multiple trial type fMRI experiments is available

for download at http://fmriserver.ucsd.edu/ttliu/.
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Appendix A

The definition of conditional entropy stated in Eq. (28) of Liu

and Frank (2004) is repeated here for the convenience of the

reader. For a stimulus pattern of the form a1, a2,. . ., aN where the

trial type ai for the ith event is drawn from an alphabet A, the

conditional entropy is

Hr¼�
X
aiaA

X
ai�1aA

: : :
X
ai�raA

pðai�r; . . . ; ai�1; aiÞlog2pðai j ai�r;: : :; ai�1Þ

where p(ai� r,. . ., ai� 1, ai) is the probability of the sequence

ai � r,. . ., ai � 1, ai of (r + 1) trial types occurring, and

p(aijai � r,. . ., ai � 1) is the conditional probability of trial

type ai occurring after the sequence of r trial types ai� r,. . .,
ai� 1.

As derived in Liu and Frank (2004), the theoretical expressions

for detection power and estimation efficiency are

Rtot ¼
Nk

2ðQþ 1Þ acos2h þ 1� a
k � 1

sin2h

� �

ntot ¼
Nk

2ðQþ 1Þ
að1� aÞ

1þ aðk2 � kÞ
where 1/k V a V 1 and the angle h is used to empirically model the

relative detection power of different block designs.

 http:\\www.fmriserver.ucsd.edu\ttliu\ 
 http:\\www.fmriserver.ucsd.edu\ttliu\ 
 http:\\www.fmriserver.ucsd.edu\ttliu\ 
 http:\\www.fmriserver.ucsd.edu\ttliu\ 
 http:\\www.fmriserver.ucsd.edu\ttliu\ 
 http:\\www.fmriserver.ucsd.edu\ttliu\ 


T.T. Liu / NeuroImage 21 (2004) 401–413 413
References

Aguirre, G.K., Zarahn, E., D’Esposito, M., 1998. The variability of human,

BOLD hemodynamic responses. NeuroImage 8, 360–369.

Birn, R.M., Cox, R.W., Bandettini, P.A., 2002. Detection versus estimation

in event-related fMRI: choosing the optimal stimulus timing. Neuro-

Image 15, 252–264.

Bischoff-Grethe, A., Martin, M., Mao, H., Berns, G.S., 2001. The context

of uncertainty modulates the subcortical response to predictability.

J. Cogn. Neurosci. 13, 986–993.

Buracas, G.T., Boynton, G.M., 2002. Efficient design of event-related

fMRI experiments using m-sequences. NeuroImage 16, 801–813.

Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R., Dale, A.M.,

1998. Randomized event-related experimental designs allow for ex-

tremely rapid presentation rates using functional MRI. NeuroReport

9, 3735–3739.

Buxton, R.B., Liu, T.T., Martinez, A., Frank, L.R., Luh, W.-M., Wong,

E.C., 2000. Sorting out event-related paradigms in fMRI: the distinction

between detecting an activation and estimating the hemodynamic re-

sponse. NeuroImage 11, S457.

Cover, T.M., Thomas, J.A., 1991. Elements of Information Theory. Wiley,

New York.

Cox, R.W., 1996. AFNI-software for analysis and visualization of func-
tional magnetic resonance neuroimages. Comput. Biomed. Res. 29,

162–173.

Friston, K.J., Frith, C.D., Turner, R., Frackowiak, R.S.J., 1995. Character-

izing evoked hemodynamics with fMRI. NeuroImage 2, 157–165.

Friston, K.J., Josephs, O., Rees, G., Turner, R., 1998. Nonlinear event-

related responses in fMRI. Magn. Reson. Med. 39, 41–52.

Friston, K.J., Zarahn, E., Josephs, O., Henson, R.N.A., Dale, A.M.,

1999. Stochastic designs in event-related fMRI. NeuroImage 10,

607–619.

Godfrey, K., 1993. Perturbation Signals for System Identification. Prentice-

Hall, Englewood Cliffs, NJ.

Liu, T.T., Frank, L.R., 2004. Efficiency, power, and entropy in event-

related fMRI with multiple trial types—Part I: theory. NeuroImage

21, 387–400.

Liu, T.T., Frank, L.R., Wong, E.C., Buxton, R.B., 2001. Detection power,

estimation efficiency, and predictability in event-related fMRI. Neuro-

Image 13, 759–773.

Miller, K.L., Luh, W.-M., Liu, T.T., Martinez, A., Obata, T., Wong, E.C.,

Frank, L.R., Buxton, R.B., 2001. Nonlinear temporal dynamics of the

cerebral blood flow response. Hum. Brain Mapp. 13, 1–12.

Wager, T.D., Nichols, T.E., 2003. Optimization of experimental design in

fMRI: a general framework using a genetic algorithm. NeuroImage 18,

293–309.


	Efficiency, power, and entropy in event-related fMRI with multiple trial types
	Introduction
	Design theory
	Experimental assumptions
	Statistical efficiency: detection power and estimation efficiency
	Conditional entropy
	Relation among estimation efficiency, detection power, and conditional entropy
	Optimal frequency of occurrence
	Bounds on estimation efficiency and detection power

	Experimental designs
	Block designs
	Permuted block designs
	m-Sequence-based designs
	Clustered m-sequences
	Mixed designs

	Discussion
	Acknowledgements
	References


