
Chapter 2

Models With Multiple Random-effects
Terms

The mixed models considered in the previous chapter had only one random-
effects term, which was a simple, scalar random-effects term, and a single
fixed-effects coefficient. Although such models can be useful, it is with the
facility to use multiple random-effects terms and to use random-effects terms
beyond a simple, scalar term that we can begin to realize the flexibility and
versatility of mixed models.

In this chapter we consider models with multiple simple, scalar random-
effects terms, showing examples where the grouping factors for these terms
are in completely crossed or nested or partially crossed configurations. For
ease of description we will refer to the random effects as being crossed or
nested although, strictly speaking, the distinction between nested and non-
nested refers to the grouping factors, not the random effects.

2.1 A Model With Crossed Random Effects

One of the areas in which the methods in the lme4 package for R are particu-
larly effective is in fitting models to cross-classified data where several factors
have random effects associated with them. For example, in many experiments
in psychology the reaction of each of a group of subjects to each of a group
of stimuli or items is measured. If the subjects are considered to be a sample
from a population of subjects and the items are a sample from a population
of items, then it would make sense to associate random effects with both
these factors.

In the past it was difficult to fit mixed models with multiple, crossed
grouping factors to large, possibly unbalanced, data sets. The methods in
the lme4 package are able to do this. To introduce the methods let us first
consider a small, balanced data set with crossed grouping factors.
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28 2 Models With Multiple Random-effects Terms

2.1.1 The Penicillin Data

The Penicillin data are derived from Table 6.6, p. 144 of Davies and Gold-
smith [1972] where they are described as coming from an investigation to

assess the variability between samples of penicillin by the B. subtilis method.
In this test method a bulk-innoculated nutrient agar medium is poured into
a Petri dish of approximately 90 mm. diameter, known as a plate. When the
medium has set, six small hollow cylinders or pots (about 4 mm. in diameter)
are cemented onto the surface at equally spaced intervals. A few drops of the
penicillin solutions to be compared are placed in the respective cylinders, and
the whole plate is placed in an incubator for a given time. Penicillin diffuses
from the pots into the agar, and this produces a clear circular zone of inhibition
of growth of the organisms, which can be readily measured. The diameter of
the zone is related in a known way to the concentration of penicillin in the
solution.

As with the Dyestuff data, we examine the structure

> str(Penicillin)

'data.frame': 144 obs. of 3 variables:

$ diameter: num 27 23 26 23 23 21 27 23 26 23 ...

$ plate : Factor w/ 24 levels "a","b","c","d",..: 1 1 1 1 1 1 2 2 2 2..

$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4 ..

and a summary

> summary(Penicillin)

diameter plate sample

Min. :18.00 a : 6 A:24

1st Qu.:22.00 b : 6 B:24

Median :23.00 c : 6 C:24

Mean :22.97 d : 6 D:24

3rd Qu.:24.00 e : 6 E:24

Max. :27.00 f : 6 F:24

(Other):108

of the Penicillin data, then plot it (Fig. 2.1).
The variation in the diameter is associated with the plates and with the

samples. Because each plate is used only for the six samples shown here we
are not interested in the contributions of specific plates as much as we are
interested in the variation due to plates and in assessing the potency of the
samples after accounting for this variation. Thus, we will use random effects
for the plate factor. We will also use random effects for the sample factor
because, as in the dyestuff example, we are more interested in the sample-to-
sample variability in the penicillin samples than in the potency of a particular
sample.

In this experiment each sample is used on each plate. We say that the
sample and plate factors are crossed, as opposed to nested factors, which
we will describe in the next section. By itself, the designation “crossed” just
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Fig. 2.1 Diameter of the growth inhibition zone (mm) in the B. subtilis method of
assessing the concentration of penicillin. Each of 6 samples was applied to each of the
24 agar plates. The lines join observations on the same sample.

means that the factors are not nested. If we wish to be more specific, we
could describe these factors as being completely crossed, which means that
we have at least one observation for each combination of a level of sample and
a level of plate. We can see this in Fig. 2.1 and, because there are moderate
numbers of levels in these factors, we can check it in a cross-tabulation

> xtabs(~ sample + plate, Penicillin)

plate

sample a b c d e f g h i j k l m n o p q r s t u v w x

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Like the Dyestuff data, the factors in the Penicillin data are balanced.
That is, there are exactly the same number of observations on each plate and
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30 2 Models With Multiple Random-effects Terms

for each sample and, furthermore, there is the same number of observations
on each combination of levels. In this case there is exactly one observation for
each combination of sample and plate. We would describe the configuration
of these two factors as an unreplicated, completely balanced, crossed design.

In general, balance is a desirable but precarious property of a data set.
We may be able to impose balance in a designed experiment but we typically
cannot expect that data from an observation study will be balanced. Also,
as anyone who analyzes real data soon finds out, expecting that balance in
the design of an experiment will produce a balanced data set is contrary to
“Murphy’s Law”. That’s why statisticians allow for missing data. Even when
we apply each of the six samples to each of the 24 plates, something could
go wrong for one of the samples on one of the plates, leaving us without a
measurement for that combination of levels and thus an unbalanced data set.

2.1.2 A Model For the Penicillin Data

A model incorporating random effects for both the plate and the sample is
straightforward to specify — we include simple, scalar random effects terms
for both these factors.

> (fm2 <- lmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin))

Linear mixed model fit by REML

Formula: diameter ~ 1 + (1 | plate) + (1 | sample)

Data: Penicillin

REML

330.9

Random effects:

Groups Name Variance Std.Dev.

plate (Intercept) 0.71691 0.84671

sample (Intercept) 3.73097 1.93157

Residual 0.30241 0.54992

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 22.9722 0.8086 28.41

This model display indicates that the sample-to-sample variability has the
greatest contribution, then plate-to-plate variability and finally the “resid-
ual” variability that cannot be attributed to either the sample or the plate.
These conclusions are consistent with what we see in the Penicillin data plot
(Fig. 2.1).

The prediction intervals on the random effects (Fig. 2.2) confirm that
the conditional distribution of the random effects for plate has much less
variability than does the conditional distribution of the random effects for
plate, in the sense that the dots in the bottom panel have less variability than
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Fig. 2.2 95% prediction intervals on the random effects for model fm2 fit to the
Penicillin data.

those in the top panel. (Note the different horizontal axes for the two panels.)
However, the conditional distribution of the random effect for a particular
sample, say sample F, has less variability than the conditional distribution of
the random effect for a particular plate, say plate m. That is, the lines in the
bottom panel are wider than the lines in the top panel, even after taking the
different axis scales into account. This is because the conditional distribution
of the random effect for a particular sample depends on 24 responses while the
conditional distribution of the random effect for a particular plate depends
on only 6 responses.

In chapter 1 we saw that a model with a single, simple, scalar random-
effects term generated a random-effects model matrix, Z, that is the matrix
of indicators of the levels of the grouping factor. When we have multiple,
simple, scalar random-effects terms, as in model fm2, each term generates a
matrix of indicator columns and these sets of indicators are concatenated to
form the model matrix Z. The transpose of this matrix, shown in Fig. 2.3,
contains rows of indicators for each factor.

The relative covariance factor, Λθ , (Fig. 2.4, left panel) is no longer a
multiple of the identity. It is now block diagonal, with two blocks, one of size
24 and one of size 6, each of which is a multiple of the identity. The diagonal
elements of the two blocks are θ1 and θ2, respectively. The numeric values of
these parameters can be obtained as

> env(fm2)$theta
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Fig. 2.3 Image of the transpose of the random-effects model matrix, Z, for model
fm2. The non-zero elements, which are all unity, are shown as darkened squares. The
zero elements are blank.
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Fig. 2.4 Images of the relative covariance factor, Λ , the cross-product of the random-
effects model matrix, ZTZ, and the sparse Cholesky factor, L, for model fm2.

[1] 1.539683 3.512443

The first parameter is the relative standard deviation of the random effects
for plate, which has the value 0.84671/0.54992 = 1.53968 at convergence, and
the second is the relative standard deviation of the random effects for sample

(1.93157/0.54992 = 3.512443).
Because Λθ is diagonal, the pattern of non-zeros in ΛT

θ ZTZΛθ + I will be
the same as that in ZTZ, shown in the middle panel of Fig. 2.4. The sparse
Cholesky factor, L, shown in the right panel, is lower triangular and has
non-zero elements in the lower right hand corner in positions where ZTZ has
systematic zeros. We say that “fill-in” has occurred when forming the sparse
Cholesky decomposition. In this case there is a relatively minor amount of fill
but in other cases there can be a substantial amount of fill and we shall take
precautions so as to reduce this, because fill-in adds to the computational
effort in determining the MLEs or the REML estimates.

A profile zeta plot (Fig. 2.5) for the parameters in model fm2 leads to con-
clusions similar to those from Fig. 1.5 for model fm1ML in the previous chapter.
The fixed-effect parameter, β0, for the (Intercept) term has symmetric inter-
vals and is over-dispersed relative to the normal distribution. The logarithm
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Fig. 2.5 Profile zeta plot of the parameters in model fm2.

of σ has a good normal approximation but the standard deviations of the
random effects, σ1 and σ2, are skewed. The skewness for σ2 is worse than
that for σ1, because the estimate of σ2 is less precise than that of σ1, in
both absolute and relative senses. For an absolute comparison we compare
the widths of the confidence intervals for these parameters.

> confint(pr2)

2.5 % 97.5 %

.sig01 0.6335658 1.1821040

.sig02 1.0957822 3.5563194

.lsig -0.7218645 -0.4629033

(Intercept) 21.2666274 24.6778176

In a relative comparison we examine the ratio of the endpoints of the interval
divided by the estimate.

> confint(pr2)[1:2,]/c(0.8455722, 1.770648)

2.5 % 97.5 %

.sig01 0.7492746 1.397993

.sig02 0.6188594 2.008485

The lack of precision in the estimate of σ2 is a consequence of only having
6 distinct levels of the sample factor. The plate factor, on the other hand,
has 24 distinct levels. In general it is more difficult to estimate a measure
of spread, such as the standard deviation, than to estimate a measure of
location, such as a mean, especially when the number of levels of the factor
is small. Six levels are about the minimum number required for obtaining
sensible estimates of standard deviations for simple, scalar random effects
terms.

The profile pairs plot (Fig. 2.6) shows patterns similar to those in Fig. 1.9
for pairs of parameters in model fm1 fit to the Dyestuff data. On the ζ scale
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Fig. 2.6 Profile pairs plot for the parameters in model fm2 fit to the Penicillin

data.

(panels below the diagonal) the profile traces are nearly straight and orthog-
onal with the exception of the trace of ζ (σ2) on ζ (β0) (the horizontal trace
for the panel in the (4,2) position). The pattern of this trace is similar to
the pattern of the trace of ζ (σ1) on ζ (β0) in Fig. 1.9. Moving β0 from its
estimate, β̂0, in either direction will increase the residual sum of squares. The
increase in the residual variability is reflected in an increase of one or more
of the dispersion parameters. The balanced experimental design results in a
fixed estimate of σ and the extra apparent variability must be incorporated
into σ1 or σ2.

Contours in panels of parameter pairs on the original scales (i.e. panels
above the diagonal) can show considerable distortion from the ideal elliptical
shape. For example, contours in the σ2 versus σ1 panel (the (1,2) position)
and the log(σ) versus σ2 panel (in the (2,3) position) are dramatically non-
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Fig. 2.7 Profile pairs plot for the parameters in model fm2 fit to the Penicillin

data. In this plot the parameters σ1 and σ2 are on the scale of the natural logarithm,
as is the parameter σ in this and other profile pairs plots.

elliptical. However, the distortion of the contours is not due to these param-
eter estimates depending strongly on each other. It is almost entirely due to
the choice of scale for σ1 and σ2. When we plot the contours on the scale of
log(σ1) and log(σ2) instead (Fig. 2.7) they are much closer to the elliptical
pattern.

Conversely, if we tried to plot contours on the scale of σ2
1 and σ2

2 (not
shown), they would be hideously distorted.
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36 2 Models With Multiple Random-effects Terms

2.2 A Model With Nested Random Effects

In this section we again consider a simple example, this time fitting a model
with nested grouping factors for the random effects.

2.2.1 The Pastes Data

The third example from Davies and Goldsmith [1972, Table 6.5, p. 138] is
described as coming from

deliveries of a chemical paste product contained in casks where, in addition to
sampling and testing errors, there are variations in quality between deliveries
. . . As a routine, three casks selected at random from each delivery were sampled
and the samples were kept for reference. . . . Ten of the delivery batches were
sampled at random and two analytical tests carried out on each of the 30
samples.

The structure and summary of the Pastes data object are

> str(Pastes)

'data.frame': 60 obs. of 4 variables:

$ strength: num 62.8 62.6 60.1 62.3 62.7 63.1 60 61.4 57.5 56.9 ...

$ batch : Factor w/ 10 levels "A","B","C","D",..: 1 1 1 1 1 1 2 2 2 2..

$ cask : Factor w/ 3 levels "a","b","c": 1 1 2 2 3 3 1 1 2 2 ...

$ sample : Factor w/ 30 levels "A:a","A:b","A:c",..: 1 1 2 2 3 3 4 4 5..

> summary(Pastes)

strength batch cask sample

Min. :54.20 A : 6 a:20 A:a : 2

1st Qu.:57.50 B : 6 b:20 A:b : 2

Median :59.30 C : 6 c:20 A:c : 2

Mean :60.05 D : 6 B:a : 2

3rd Qu.:62.88 E : 6 B:b : 2

Max. :66.00 F : 6 B:c : 2

(Other):24 (Other):48

As stated in the description in Davies and Goldsmith [1972], there are
30 samples, three from each of the 10 delivery batches. We have labelled
the levels of the sample factor with the label of the batch factor followed
by ‘a’, ‘b’ or ‘c’ to distinguish the three samples taken from that batch. The
cross-tabulation produced by the xtabs function, using the optional argument
sparse = TRUE, provides a concise display of the relationship.

> xtabs(~ batch + sample, Pastes, drop = TRUE, sparse = TRUE)

10 x 30 sparse Matrix of class "dgCMatrix"

A 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . .
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Fig. 2.8 Image of the cross-tabulation of the batch and sample factors in the Pastes

data.

D . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . .

E . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . .

F . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . .

G . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . .

H . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . .

I . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . .

J . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2

Alternatively, we can use an image (Fig. 2.8) of this cross-tabulation to visu-
alize the structure.

When plotting the strength versus batch and sample in the Pastes data we
should remember that we have two strength measurements on each of the
30 samples. It is tempting to use the cask designation (‘a’, ‘b’ and ‘c’) to
determine, say, the plotting symbol within a batch. It would be fine to do this
within a batch but the plot would be misleading if we used the same symbol
for cask ‘a’ in different batches. There is no relationship between cask ‘a’ in
batch ‘A’ and cask ‘a’ in batch ‘B’. The labels ‘a’, ‘b’ and ‘c’ are used only
to distinguish the three samples within a batch; they do not have a meaning
across batches.

In Fig. 2.9 we plot the two strength measurements on each of the samples
within each of the batches and join up the average strength for each sample.
The perceptive reader will have noticed that the levels of the factors on the
vertical axis in this figure, and in Fig. 1.1 and 2.1, have been reordered ac-
cording to increasing average response. In all these cases there is no inherent
ordering of the levels of the covariate such as batch or plate. Rather than con-
fuse our interpretation of the plot by determining the vertical displacement
of points according to a random ordering, we impose an ordering according
to increasing mean response. This allows us to more easily check for structure
in the data, including undesirable characteristics like increasing variability of
the response with increasing mean level of the response.

In Fig. 2.9 we order the samples within each batch separately then order
the batches according to increasing mean strength.
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Fig. 2.9 Strength of paste preparations according to the batch and the sample within
the batch. There were two strength measurements on each of the 30 samples; three
samples each from 10 batches.

Figure 2.9 shows considerable variability in strength between samples rel-
ative to the variability within samples. There is some indication of variability
between batches, in addition to the variability induced by the samples, but
not a strong indication of a batch effect. For example, batches I and D, with
low mean strength relative to the other batches, each contained one sam-
ple (I:b and D:c, respectively) that had high mean strength relative to the
other samples. Also, batches H and C, with comparatively high mean batch
strength, contain samples H:a and C:a with comparatively low mean sample
strength. In Sect. 2.2.4 we will examine the need for incorporating batch-to-
batch variability, in addition to sample-to-sample variability, in the statistical
model.
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2.2.1.1 Nested Factors

Because each level of sample occurs with one and only one level of batch we
say that sample is nested within batch. Some presentations of mixed-effects
models, especially those related to multilevel modeling [Rasbash et al., 2000]
or hierarchical linear models [Raudenbush and Bryk, 2002], leave the impres-
sion that one can only define random effects with respect to factors that
are nested. This is the origin of the terms “multilevel”, referring to multiple,
nested levels of variability, and “hierarchical”, also invoking the concept of
a hierarchy of levels. To be fair, both those references do describe the use
of models with random effects associated with non-nested factors, but such
models tend to be treated as a special case.

The blurring of mixed-effects models with the concept of multiple, hier-
archical levels of variation results in an unwarranted emphasis on “levels”
when defining a model and leads to considerable confusion. It is perfectly le-
gitimate to define models having random effects associated with non-nested
factors. The reasons for the emphasis on defining random effects with respect
to nested factors only are that such cases do occur frequently in practice and
that some of the computational methods for estimating the parameters in
the models can only be easily applied to nested factors.

This is not the case for the methods used in the lme4 package. Indeed there
is nothing special done for models with random effects for nested factors.
When random effects are associated with multiple factors exactly the same
computational methods are used whether the factors form a nested sequence
or are partially crossed or are completely crossed. A case of a nested sequence
of “grouping factors” for the random effects (including the trivial case of only
one such factor) is detected but this information does not change the course
of the computation. It is available to be used as a diagnostic check. When
the user knows that the grouping factors should be nested, she can check if
they are indeed nested.

There is, however, one aspect of nested grouping factors that we should
emphasize, which is the possibility of a factor that is implicitly nested within
another factor. Suppose, for example, that the sample factor was defined as
having three levels instead of 30 with the implicit assumption that sample

is nested within batch. It may seem silly to try to distinguish 30 different
batches with only three levels of a factor but, unfortunately, data are fre-
quently organized and presented like this, especially in text books. The cask

factor in the Pastes data is exactly such an implicitly nested factor. If we
cross-tabulate batch and cask

> xtabs(~ cask + batch, Pastes)

batch

cask A B C D E F G H I J

a 2 2 2 2 2 2 2 2 2 2

b 2 2 2 2 2 2 2 2 2 2

c 2 2 2 2 2 2 2 2 2 2
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40 2 Models With Multiple Random-effects Terms

we get the impression that the cask and batch factors are crossed, not nested.
If we know that the cask should be considered as nested within the batch then
we should create a new categorical variable giving the batch-cask combina-
tion, which is exactly what the sample factor is. A simple way to create such a
factor is to use the interaction operator, ‘:’, on the factors. It is advisable, but
not necessary, to apply factor to the result thereby dropping unused levels of
the interaction from the set of all possible levels of the factor. (An “unused
level” is a combination that does not occur in the data.) A convenient code
idiom is

> Pastes$sample <- with(Pastes, factor(batch:cask))

or

> Pastes <- within(Pastes, sample <- factor(batch:cask))

In a small data set like Pastes we can quickly detect a factor being implic-
itly nested within another factor and take appropriate action. In a large data
set, perhaps hundreds of thousands of test scores for students in thousands
of schools from hundreds of school districts, it is not always obvious if school
identifiers are unique across the entire data set or just within a district. If you
are not sure, the safest thing to do is to create the interaction factor, as shown
above, so you can be confident that levels of the district:school interaction
do indeed correspond to unique schools.

2.2.2 Fitting a Model With Nested Random Effects

Fitting a model with simple, scalar random effects for nested factors is done
in exactly the same way as fitting a model with random effects for crossed
grouping factors. We include random-effects terms for each factor, as in

> (fm3 <- lmer(strength ~ 1 + (1|sample) + (1|batch), Pastes, REML=0))

Linear mixed model fit by maximum likelihood

Formula: strength ~ 1 + (1 | sample) + (1 | batch)

Data: Pastes

AIC BIC logLik deviance

256 264.4 -124 248

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 8.4337 2.9041

batch (Intercept) 1.1992 1.0951

Residual 0.6780 0.8234

Number of obs: 60, groups: sample, 30; batch, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.6421 93.52
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Fig. 2.10 Images of the relative covariance factor, Λ , the cross-product of the
random-effects model matrix, ZTZ, and the sparse Cholesky factor, L, for model
fm3.

Not only is the model specification similar for nested and crossed factors,
the internal calculations are performed according to the methods described
in Sect. 1.4.1 for each model type. Comparing the patterns in the matrices Λ ,
ZTZ and L for this model (Fig. 2.10) to those in Fig. 2.4 shows that models
with nested factors produce simple repeated structures along the diagonal of
the sparse Cholesky factor, L, after reordering the random effects (we discuss
this reordering later in Sect. 5.4.1). This type of structure has the desirable
property that there is no “fill-in” during calculation of the Cholesky factor.
In other words, the number of non-zeros in L is the same as the number of
non-zeros in the lower triangle of the matrix being factored, ΛTZTZΛ + I
(which, because Λ is diagonal, has the same structure as ZTZ).

Fill-in of the Cholesky factor is not an important issue when we have a few
dozen random effects, as we do here. It is an important issue when we have
millions of random effects in complex configurations, as has been the case in
some of the models that have been fit using lmer.

2.2.3 Assessing Parameter Estimates in Model fm3

The parameter estimates are: σ̂1 =2.904, the standard deviation of the ran-
dom effects for sample; σ̂2 =1.095, the standard deviation of the random effects
for batch; σ̂ =0.823, the standard deviation of the residual noise term; and
β̂0 =60.053, the overall mean response, which is labeled (Intercept) in these
models.

The estimated standard deviation for sample is nearly three times as large
as that for batch, which confirms what we saw in Fig. 2.9. Indeed our con-
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Fig. 2.11 95% prediction intervals on the random effects for model fm3 fit to the
Pastes data.

clusion from Fig. 2.9 was that there may not be a significant batch-to-batch
variability in addition to the sample-to-sample variability.

Plots of the prediction intervals of the random effects (Fig. 2.11) confirm
this impression in that all the prediction intervals for the random effects for
batch contain zero. Furthermore, the profile zeta plot (Fig. 2.12) shows that
the even the 50% profile-based confidence interval on σ2 extends to zero.

Because there are several indications that σ2 could reasonably be zero,
resulting in a simpler model incorporating random effects for batch only, we
perform a statistical test of this hypothesis.

2.2.4 Testing H0 : σ2 = 0 Versus Ha : σ2 > 0

One of the many famous statements attributed to Albert Einstein is “Every-
thing should be made as simple as possible, but not simpler.” In statistical
modeling this principal of parsimony is embodied in hypothesis tests compar-
ing two models, one of which contains the other as a special case. Typically,
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Fig. 2.12 Profile zeta plots for the parameters in model fm3.

one or more of the parameters in the more general model, which we call the
alternative hypothesis, is constrained in some way, resulting in the restricted
model, which we call the null hypothesis. Although we phrase the hypothesis
test in terms of the parameter restriction, it is important to realize that we
are comparing the quality of fits obtained with two nested models. That is,
we are not assessing parameter values per se; we are comparing the model
fit obtainable with some constraints on parameter values to that without the
constraints.

Because the more general model, Ha, must provide a fit that is at least as
good as the restricted model, H0, our purpose is to determine whether the
change in the quality of the fit is sufficient to justify the greater complexity
of model Ha. This comparison is often reduced to a p-value, which is the
probability of seeing a difference in the model fits as large as we did, or even
larger, when, in fact, H0 is adequate. Like all probabilities, a p-value must
be between 0 and 1. When the p-value for a test is small (close to zero) we
prefer the more complex model, saying that we “reject H0 in favor of Ha”. On
the other hand, when the p-value is not small we “fail to reject H0”, arguing
that there is a non-negligible probability that the observed difference in the
model fits could reasonably be the result of random chance, not the inherent
superiority of the model Ha. Under these circumstances we prefer the simpler
model, H0, according to the principal of parsimony.

These are the general principles of statistical hypothesis tests. To perform a
test in practice we must specify the criterion for comparing the model fits, the
method for calculating the p-value from an observed value of the criterion, and
the standard by which we will determine if the p-value is “small” or not. The
criterion is called the test statistic, the p-value is calculated from a reference
distribution for the test statistic, and the standard for small p-values is called
the level of the test.
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In Sect. 1.5 we referred to likelihood ratio tests (LRTs) for which the test
statistic is the difference in the deviance. That is, the LRT statistic is d0−da
where da is the deviance in the more general (Ha) model fit and d0 is the de-
viance in the constrained (H0) model. An approximate reference distribution
for an LRT statistic is the χ2

ν distribution where ν , the degrees of freedom,
is determined by the number of constraints imposed on the parameters of Ha
to produce H0.

The restricted model fit

> (fm3a <- lmer(strength ~ 1 + (1|sample), Pastes, REML=0))

Linear mixed model fit by maximum likelihood

Formula: strength ~ 1 + (1 | sample)

Data: Pastes

AIC BIC logLik deviance

254.4 260.7 -124.2 248.4

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 9.6328 3.1037

Residual 0.6780 0.8234

Number of obs: 60, groups: sample, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.5765 104.2

is compared to model fm3 with the anova function

> anova(fm3a, fm3)

Data: Pastes

Models:

fm3a: strength ~ 1 + (1 | sample)

fm3: strength ~ 1 + (1 | sample) + (1 | batch)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm3a 3 254.40 260.69 -124.20

fm3 4 255.99 264.37 -124.00 0.4072 1 0.5234

which provides a p-value of 0.5234. Because typical standards for “small” p-
values are 5% or 1%, a p-value over 50% would not be considered significant
at any reasonable level.

We do need to be cautious in quoting this p-value, however, because the
parameter value being tested, σ2 = 0, is on the boundary of set of possible
values, σ2 ≥ 0, for this parameter. The argument for using a χ2

1 distribution
to calculate a p-value for the change in the deviance does not apply when the
parameter value being tested is on the boundary. As shown in Pinheiro and
Bates [2000, Sect. 2.5], the p-value from the χ2

1 distribution will be “conser-
vative” in the sense that it is larger than a simulation-based p-value would
be. In the worst-case scenario the χ2-based p-value will be twice as large as
it should be but, even if that were true, an effective p-value of 26% would
not cause us to reject H0 in favor of Ha.
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Fig. 2.13 Profile zeta plots for the parameters in model fm3a.

2.2.5 Assessing the Reduced Model, fm3a

The profile zeta plots for the remaining parameters in model fm3a (Fig. 2.13)
are similar to the corresponding panels in Fig. 2.12, as confirmed by the
numerical values of the confidence intervals.
> confint(pr3)

2.5 % 97.5 %

.sig01 2.1579337 4.05358895

.sig02 NA 2.94658928

.lsig -0.4276761 0.08199287

(Intercept) 58.6636504 61.44301637

> confint(pr3a)

2.5 % 97.5 %

.sig01 2.4306377 4.12201052

.lsig -0.4276772 0.08199277

(Intercept) 58.8861831 61.22048353

The confidence intervals on log(σ) and β0 are similar for the two models.
The confidence interval on σ1 is slightly wider in model fm3a than in fm3,
because the variability that is attributed to batch in fm3 is incorporated into
the variability due to sample in fm3a.

The patterns in the profile pairs plot (Fig. 2.14) for the reduced model
fm3a are similar to those in Fig. 1.9, the profile pairs plot for model fm1.

2.3 A Model With Partially Crossed Random Effects

Especially in observational studies with multiple grouping factors, the con-
figuration of the factors frequently ends up neither nested nor completely
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Fig. 2.14 Profile pairs plot for the parameters in model fm3a fit to the Pastes data.

crossed. We describe such situations as having partially crossed grouping fac-
tors for the random effects.

Studies in education, in which test scores for students over time are also
associated with teachers and schools, usually result in partially crossed group-
ing factors. If students with scores in multiple years have different teachers
for the different years, the student factor cannot be nested within the teacher
factor. Conversely, student and teacher factors are not expected to be com-
pletely crossed. To have complete crossing of the student and teacher factors
it would be necessary for each student to be observed with each teacher,
which would be unusual. A longitudinal study of thousands of students with
hundreds of different teachers inevitably ends up partially crossed.

In this section we consider an example with thousands of students and
instructors where the response is the student’s evaluation of the instructor’s
effectiveness. These data, like those from most large observational studies,
are quite unbalanced.
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2.3.1 The InstEval Data

The InstEval data are from a special evaluation of lecturers by students at the
Swiss Federal Institute for Technology–Zürich (ETH–Zürich), to determine
who should receive the “best-liked professor” award. These data have been
slightly simplified and identifying labels have been removed, so as to preserve
anonymity.

The variables

> str(InstEval)

'data.frame': 73421 obs. of 7 variables:

$ s : Factor w/ 2972 levels "1","2","3","4",..: 1 1 1 1 2 2 3 3 3 ..

$ d : Factor w/ 1128 levels "1","6","7","8",..: 525 560 832 1068 6..

$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1 1 1 ..

$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1 1 1 1..

$ service: Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 1 1 1 ...

$ dept : Factor w/ 14 levels "15","5","10",..: 14 5 14 12 2 2 13 3 3 ..

$ y : int 5 2 5 3 2 4 4 5 5 4 ...

have somewhat cryptic names. Factor s designates the student and d the
instructor. The dept factor is the department for the course and service indi-
cates whether the course was a service course taught to students from other
departments.

Although the response, y, is on a scale of 1 to 5,

> xtabs(~ y, InstEval)

y

1 2 3 4 5

10186 12951 17609 16921 15754

it is sufficiently diffuse to warrant treating it as if it were a continuous re-
sponse.

At this point we will fit models that have random effects for student,
instructor, and department (or the dept:service combination) to these data.
In the next chapter we will fit models incorporating fixed-effects for instructor
and department to these data.

> (fm4 <- lmer(y ~ 1 + (1|s) + (1|d)+(1|dept:service), InstEval, REML=0))

Linear mixed model fit by maximum likelihood

Formula: y ~ 1 + (1 | s) + (1 | d) + (1 | dept:service)

Data: InstEval

AIC BIC logLik deviance

237663 237709 -118827 237653

Random effects:

Groups Name Variance Std.Dev.

s (Intercept) 0.105404 0.32466

d (Intercept) 0.262563 0.51241

dept:service (Intercept) 0.012126 0.11012

Residual 1.384953 1.17684
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Fig. 2.15 95% prediction intervals on the random effects for the dept:service factor
in model fm4 fit to the InstEval data.

Number of obs: 73421, groups: s, 2972; d, 1128; dept:service, 28

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.25521 0.02824 115.3

(Fitting this complex model to a moderately large data set takes less than
two minutes on a modest laptop computer purchased in 2006. Although this
is more time than required for earlier model fits, it is a remarkably short time
for fitting a model of this size and complexity. In some ways it is remarkable
that such a model can be fit at all on such a computer.)

All three estimated standard deviations of the random effects are less than
σ̂ , with σ̂3, the estimated standard deviation of the random effects for the
dept:service interaction, less than one-tenth the estimated residual standard
deviation.

It is not surprising that zero is within all of the prediction intervals on the
random effects for this factor (Fig. 2.15). In fact, zero is close to the middle of
all these prediction intervals. However, the p-value for the LRT of H0 : σ3 = 0
versus Ha : σ3 > 0

> fm4a <- lmer(y ~ 1 + (1|s) + (1|d), InstEval, REML=0)

> anova(fm4a,fm4)

Data: InstEval

Models:

fm4a: y ~ 1 + (1 | s) + (1 | d)

fm4: y ~ 1 + (1 | s) + (1 | d) + (1 | dept:service)
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Fig. 2.16 Image of the sparse Cholesky factor, L, from model fm4

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm4a 4 237786 237823 -118889

fm4 5 237663 237709 -118827 124.43 1 < 2.2e-16

is highly significant. That is, we have very strong evidence that we should
reject H0 in favor of Ha.

The seeming inconsistency of these conclusions is due to the large sample
size (n = 73421). When a model is fit to a very large sample even the most
subtle of differences can be highly “statistically significant”. The researcher
or data analyst must then decide if these terms have practical significance,
beyond the apparent statistical significance.

The large sample size also helps to assure that the parameters have good
normal approximations. We could profile this model fit but doing so would
take a very long time and, in this particular case, the analysts are more
interested in a model that uses fixed-effects parameters for the instructors,
which we will describe in the next chapter.

We could pursue other mixed-effects models here, such as using the dept

factor and not the dept:service interaction to define random effects, but we
will revisit these data in the next chapter and follow up on some of these
variations there.
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2.3.2 Structure of L for model fm4

Before leaving this model we examine the sparse Cholesky factor, L, (Fig. 2.16),
which is of size 4128× 4128. Even as a sparse matrix this factor requires a
considerable amount of memory,

> object.size(env(fm4)$L)

6904640 bytes

> unclass(round(object.size(env(fm4)$L)/2^20, 3)) # size in megabytes

[1] 6.585

but as a triangular dense matrix it would require nearly 10 times as much.
There are (4128×4129)/2 elements on and below the diagonal, each of which
would require 8 bytes of storage. A packed lower triangular array would re-
quire

> (8 * (4128 * 4129)/2)/2^20 # size in megabytes

[1] 65.01965

megabytes. The more commonly used full rectangular storage requires

> (8 * 4128^2)/2^20 # size in megabytes

[1] 130.0078

megabytes of storage.
The number of nonzero elements in this matrix that must be updated for

each evaluation of the deviance is

> nnzero(as(env(fm4)$L, "sparseMatrix"))

[1] 566960

Comparing this to 8522256, the number of elements that must be updated in
a dense Cholesky factor, we can see why the sparse Cholesky factor provides
a much more efficient evaluation of the profiled deviance function.

2.4 Chapter Summary

A simple, scalar random effects term in an lmer model formula is of the form
(1|fac), where fac is an expression whose value is the grouping factor of the
set of random effects generated by this term. Typically, fac is simply the name
of a factor, such as in the terms (1|sample) or (1|plate) in the examples in
this chapter. However, the grouping factor can be the value of an expression,
such as (1|dept:service) in the last example.
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Because simple, scalar random-effects terms can differ only in the descrip-
tion of the grouping factor we refer to configurations such as crossed or nested
as applying to the terms or to the random effects, although it is more accurate
to refer to the configuration as applying to the grouping factors.

A model formula can include several such random effects terms. Because
configurations such as nested or crossed or partially crossed grouping factors
are a property of the data, the specification in the model formula does not
depend on the configuration. We simply include multiple random effects terms
in the formula specifying the model.

One apparent exception to this rule occurs with implicitly nested factors,
in which the levels of one factor are only meaningful within a particular level
of the other factor. In the Pastes data, levels of the cask factor are only
meaningful within a particular level of the batch factor. A model formula of

strength ~ 1 + (1 | cask) + (1 | batch)

would result in a fitted model that did not appropriately reflect the sources
of variability in the data. Following the simple rule that the factor should
be defined so that distinct experimental or observational units correspond to
distinct levels of the factor will avoid such ambiguity.

For convenience, a model with multiple, nested random-effects terms can
be specified as

strength ~ 1 + (1 | batch/cask)

which internally is re-expressed as

strength ~ 1 + (1 | batch) + (1 | batch:cask)

We will avoid terms of the form (1|batch/cask), preferring instead an ex-
plicit specification with simple, scalar terms based on unambiguous grouping
factors.

The InstEval data, described in Sec. 2.3.1, illustrate some of the charac-
teristics of the real data to which mixed-effects models are now fit. There is a
large number of observations associated with several grouping factors; two of
which, student and instructor, have a large number of levels and are partially
crossed. Such data are common in sociological and educational studies but
until now it has been very difficult to fit models that appropriately reflect
such a structure. Much of the literature on mixed-effects models leaves the
impression that multiple random effects terms can only be associated with
nested grouping factors. The resulting emphasis on hierarchical or multilevel
configurations is an artifact of the computational methods used to fit the
models, not the models themselves.

The parameters of the models fit to small data sets have properties similar
to those for the models in the previous chapter. That is, profile-based confi-
dence intervals on the fixed-effects parameter, β0, are symmetric about the
estimate but overdispersed relative to those that would be calculated from
a normal distribution and the logarithm of the residual standard deviation,
log(σ), has a good normal approximation. Profile-based confidence intervals
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for the standard deviations of random effects (σ1, σ2, etc.) are symmetric on
a logarithmic scale except for those that could be zero.

Another observation from the last example is that, for data sets with a
very large numbers of observations, a term in a model may be “statistically
significant” even when its practical significance is questionable.

Exercises

These exercises use data sets from the MEMSS package for R. Recall that to
access a particular data set, you must either attach the package

> library(MEMSS)

or load just the one data set

> data(ergoStool, package = "MEMSS")

We begin with exercises using the ergoStool data from the MEMSS package.
The analysis and graphics in these exercises is performed in Chap. 3. The
purpose of these exercises is to see if you can use the material from this
chapter to anticipate the results quoted in the next chapter.

2.1. Check the documentation, the structure (str) and a summary of the
ergoStool data from the MEMSS package. (If you are familiar with the Star
Trek television series and movies, you may want to speculate about what,
exactly, the “Borg scale” is.) Use

> xtabs(~ Type + Subject, ergoStool)

to determine if these factors are nested, partially crossed or completely
crossed. Is this a replicated or an unreplicated design?

2.2. Create a plot, similar to Fig. 2.1, showing the effort by subject with lines
connecting points corresponding to the same stool types. Order the levels of
the Subject factor by increasing average effort.

2.3. The experimenters are interested in comparing these specific stool types.
In the next chapter we will fit a model with fixed-effects for the Type factor
and random effects for Subject, allowing us to perform comparisons of these
specific types. At this point fit a model with random effects for both Type

and Subject. What are the relative sizes of the estimates of the standard
deviations, σ̂1 (for Subject), σ̂2 (for Type) and σ̂ (for the residual variability)?

2.4. Refit the model using maximum likelihood. Check the parameter esti-
mates and, in the case of the fixed-effects parameter, β0, its standard error.
In what ways have the parameter estimates changed? Which parameter esti-
mates have not changed?
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2.5. Profile the fitted model and construct 95% profile-based confidence in-
tervals on the parameters. (Note that you will get the same profile object
whether you start with the REML fit or the ML fit. There is a slight advan-
tage in starting with the ML fit.) Is the confidence interval on σ1 close to
being symmetric about its estimate? Is the confidence interval on σ2 close to
being symmetric about its estimate? Is the corresponding interval on log(σ1)
close to being symmetric about its estimate?

2.6. Create the profile zeta plot for this model. For which parameters are
there good normal approximations?

2.7. Create a profile pairs plot for this model. Comment on the shapes of the
profile traces in the transformed (ζ ) scale and the shapes of the contours in
the original scales of the parameters.

2.8. Create a plot of the 95% prediction intervals on the random effects for
Type using

> dotplot(ranef(fm, which = "Type", postVar = TRUE), aspect = 0.2,

+ strip = FALSE)

(Substitute the name of your fitted model for fm in the call to ranef.) Is there
a clear winner among the stool types? (Assume that lower numbers on the
Borg scale correspond to less effort).

2.9. Create a plot of the 95% prediction intervals on the random effects for
Subject.

2.10. Check the documentation, the structure (str) and a summary of the
Meat data from the MEMSS package. Use a cross-tabulation to discover whether
Pair and Block are nested, partially crossed or completely crossed.

2.11. Use a cross-tabulation

> xtabs(~ Pair + Storage, Meat)

to determine whether Pair and Storage are nested, partially crossed or com-
pletely crossed.

2.12. Fit a model of the score in the Meat data with random effects for Pair,
Storage and Block.

2.13. Plot the prediction intervals for each of the three sets of random effects.

2.14. Profile the parameters in this model. Create a profile zeta plot. Does
including the random effect for Block appear to be warranted. Does your con-
clusion from the profile zeta plot agree with your conclusion from examining
the prediction intervals for the random effects for Block?

Page: 53 job: lMMwR macro: svmono.cls date/time: 17-Feb-2010/14:23



54 2 Models With Multiple Random-effects Terms

2.15. Refit the model without random effects for Block. Perform a likelihood
ratio test of H0 : σ3 = 0 versus Ha : σ3 > 0. Would you reject H0 in favor of
Ha or fail to reject H0? Would you reach the same conclusion if you adjusted
the p-value for the test by halving it, to take into account the fact that 0 is
on the boundary of the parameter region?

2.16. Profile the reduced model (i.e. the one without random effects for Block)
and create profile zeta and profile pairs plots. Can you explain the apparent
interaction between log(σ) and σ1? (This is a difficult question.)
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