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Abstract

This paper provides a Bayes factor approach to multiway ANOVA that allows researchers

to state graded evidence for effects or invariances as determined by the data. ANOVA is

conceptualized as a hierarchical model where levels are clustered within factors. The

development is comprehensive in that it includes Bayes factors for fixed and random

effects and for within-subjects, between-subjects, and mixed designs. Different model

construction and comparison strategies are discussed, and an example is provided. We

show how Bayes factors may be computed with BayesFactor package in R and with the

JASP statistical package.
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Bayesian Analysis of Factorial Designs

The importance of factorial designs and the associated ANOVA tests to

experimental psychologists is difficult to overstate. Indeed, much experimental work relies

on factorial designs and ANOVA analyses. Conventional ANOVA allows researchers to

make decisions about the presence of main effects and interactions among factors. In this

paper, we present a Bayesian approach to ANOVA. We advocate the use of Bayes factors

which provide a principled approach for stating evidence from data for competing models

(Edwards, Lindman, & Savage, 1963; Jeffreys, 1961; Berger & Sellke, 1987; Morey,

Romeijn, & Rouder, 2013; Raftery, 1995).

There are two pragmatic advantages of Bayes factors for researchers: First, Bayes

factors may be used to state evidence for the absence of an effect, which is better termed

an invariance. The ability to state evidence for an invariance contrasts favorably to

significance testing where researchers state a lack of evidence for an effect. Second, with

Bayes factors, researchers need not make dichotomous reject and fail-to-reject decisions.

Instead, they may state the Bayes factor as a graded measure of evidence without recourse

to a dichotomous decision. Discussion and development of Bayesian model comparison

techniques is a vast field. The comparison among different Bayesian and frequentist

approaches has been made repeatedly. We do not wish to revisit this well trodden ground.

Interested readers are referred to Berger & Berry (1988), Edwards et al. (1963), Efron

(2005), Gelman, Shor, Bafumi, & Park (2007), Jaynes (2003), Kruschke (2011)and

Wagenmakers (2007) among others.

The goal here is to provide a Bayes-factor approach to ANOVA, and this paper

serves as a companion paper to our previous development in Rouder, Morey, Speckman, &

Province (2012). Our previous development was technical in nature and is inaccessible to

many psychologists, particularly to those who may not be familiar with Bayesian



Bayesian Analysis 4

methods. Moreover, the previous development leaves many practical issues unresolved,

such as how to perform computations in practice and which models to compare. In this

paper we provide a more relaxed and accessible treatment, providing an enhanced focus

on the practical aspects of modeling and model comparison. We show how analysis is

implemented in Morey & Rouder’s (2014) BayesFactor package for R, and in Love et al.’s

(n.d.) new open-source graphical statistical package, JASP. We discuss the types of

comparisons to be made, and how to use multiple models within a modeling hierarchy to

quantify evidence for targeted contrasts.

Bayesian Probability and Bayes Factors

This section provides a brief overview of Bayesian updating. The heart of statistical

analysis is the concept of probability. In the frequentist conceptualization, probability is

defined as a limit. It is the proportion of events in infinitely many repeated samples.

Bayesians, however, define probability as a measure of subjective belief. For example, in

the run up to the 2012 U.S. Presidential Election, statistician Nate Silver stated one-week

out that Obama has a .75 chance of winning. This statement is understood as a Bayesian

expression of belief—Silver believes that Obama will probably win. A probability

statement expresses the subjective degree of uncertainty about given propositions.

Bayesian Updating

The focus of Bayesian analysis is not what to believe but rather how to change

beliefs in light of data. Consider for example an unfair coin for which we would like to

estimate the probability of landing heads. Th coin is to be flipped 10 times. Before these

flips, the analyst’s belief s are expressed as a probability distribution. For instance, the

analyst may believe that all probabilities are equally likely, and this belief is expressed by

the uniform distribution on probability shown in Figure 1A. This distribution is called the

prior distribution on the parameter because it is specified before the data are considered.
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Let θ denote the probability of a heads, and let π(θ) denote the prior distribution. For the

prior in Figure 1A, π(θ) = 1 for valid values of θ (0 ≤ θ ≤ 1).

Now the coin is flipped, and say 7 heads are observed in 10 flips. The analyst uses a

particular rule—Bayes’ rule—to rationally update her beliefs. The resulting distribution is

shown, and it now reflects the new information. This updated distribution is called the

posterior distribution, and it expresses beliefs conditional on observing specific data, seven

heads in this case. The posterior is denoted π(θ|Y ) where Y is the number of heads in 10

flips. Figure 1B shows a different set up. Here the analyst a priori believed that the coin

was biased toward tails and observes 70 heads of 100 flips. Even though the prior was

biased toward tails, the preponderance of heads from data has led to a large-scale revision

of beliefs of θ near the value of .7. As more data are observed, the prior beliefs have less

influence on the beliefs about θ.

Bayes’ rule, which provides for an optimal updating of beliefs (see Jeffreys, 1961), is

π(θ | Y ) = U(θ,Y )× π(θ).

where θ are parameters and Y are data. The term U(θ,Y ) is the updating factor that

tells the analyst how to update the prior, π(θ), to reach the posterior, π(θ|Y ). The

updating factor is:

U(θ,Y ) =
f(Y | θ)

f(Y )
.

The numerator of the updating factor, f(Y |θ), is the likelihood function, that is, it is the

probability of the observed data expressed as a function of the parameters. The

denominator, f(Y ), is the probability of the data, which does not have a frequentist

analog. Because parameters are viewed as distributions rather than fixed constants, they
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may be conditioned upon. With this conditioning, the denominator may be re-expressed as

f(Y ) =

∫
f(Y | θ)π(θ) dθ.

This integral is an expectation value, and the denominator is the weighted average of the

likelihood function taken across all parameter values. Hence, the updating factor is the

ratio of the likelihood at the evaluated parameter value to the average likelihood across all

parameter values. The updating factor emphasizes parameter values that are more likely

than the average and attenuates parameter values that are less likely.

Figure 1 shows how updating works. Panel C shows the likelihood and averaged

likelihood (the flat line) for 7 heads in 10 flips. Let’s consider a single point: θ = .73. The

likelihood value at that point is .261, which is 2.87 times greater than the average value of

.0909. The updating factor at this point is therefore 2.87, and the posterior is 2.87 greater

than the prior for θ = .73. Panel D shows the same for 70 heads in 100 flips. The

likelihood of any parameter value is reduced, but so is the average. The likelihood at

θ = .73 is .069 which is about 25 times greater than the average value of .0028. Hence, the

posterior is 25 times greater than the prior at this point. The same updating works to

lower the plausibility of estimates. For example, consider θ = .4. For 7 heads in 10 flips,

the likelihood is about half the average, and the posterior is lowered by this factor. For 70

heads in 100 flips, the attenuation is nearly perfect as .4 is incompatible with the observed

data.

Bayes’ rule may be written as a single equation. The most useful form here is

π(θ | Y ) =
f(Y | θ)

f(Y )
× π(θ). (1)
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Bayesian Model Comparison

The preceding usage of Bayes’ rule showed how beliefs about parameters in models

should be updated. Yet, in ANOVA and in much of analysis in the psychological sciences,

we are interested in comparing models themselves. Because Bayesians view probability as

a measure of subjective belief, it is permissible to hold beliefs as probabilities on models

themselves. Let MA be our previous model on θ, the probability of heads on a flip of a

certain coin. The number of heads may be modeled as:

Y | θ ∼ Binomial(θ,N)

θ ∼ Uniform(0, 1)

In the preceding usage, we discussed role of f(Y ), the probability of data, and it served as

the denominator of the updating factor. The probability of data can also be viewed as the

prediction of the model about where the data should be observed. We had calculated it as

f(Y ) =
∫
f(Y |θ)π(θ)dθ, and noted that f(Y ) = .0909 when Y = 7 for 10 flips (see

Figure 1C). In fact, f(Y ) = .0909 = 1/11 for all values of Y for this uniform prior.

Figure 2A shows the probability of data for all the outcomes of the ten-flip experiment.

These are literally the predictions of the model, that is, the probability of where data

should fall before data have been observed. Notice that the distribution is proper and the

probabilities sum to 1: the data have to occur somewhere.

Suppose we wish to compare this unfair-coin model to a fair-coin model, denoted

MB. The fair-coin model is denoted

Y ∼ Binomial(.5, N)

The predictions of the model are given by
(
N
y

)
(.5)10 and shown in Figure 2B. With these
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predictions we are ready to make model comparison. Had we observed a low number of

heads, say Y = 2, we could note that the observation is better predicted under Model MA

(with probability .0909) than under MB (with probability .044). The ratio is 2-to-1 in

favor of the general model, and this value serves as an index of the predictive accuracy of

one model relative to the other. Conversely, had we observed a moderate number, say

Y = 5, then the observation is better predicted by the fair-coin model, Model MB than

by the more general Model MA. The ratio here is 2.7-to-1 in favor of the fair-coin

hypothesis. These ratios, called Bayes factors, are shown for all outcomes in Figure 2C.

An application of Bayes’ rule shows the important role of the Bayes factor. In

Bayesian analysis, beliefs may be placed on models themselves. Prior beliefs, those held

before considering data, for Models MA and MB are denoted Pr(MA) and Pr(MB),

respectively. Bayes’ rule is used to update these beliefs:

Pr(MA|Y ) =
f(Y |MA)Pr(MA)

f(Y )
, Pr(MB|Y ) =

f(Y |MB)Pr(MB)

f(Y )
,

where Pr(MA|Y ) and Pr(MB|Y ) are posterior beliefs. It is convenient to express these

posterior beliefs on models as odds:

Pr(MA|Y )

Pr(MB|Y )
=
f(Y | MA)

f(Y | MB)
× Pr(MA)

Pr(MB)
. (2)

The term f(Y | MA)/f(Y | MB) is the Bayes factor, and it describes the updating factor

or the extent to which the data cause revision in belief (Kass & Raftery, 1995). We denote

the Bayes factor by BAB, where the subscripts indicate which two models are being

compared. A Bayes factor of BAB = 10 means that prior odds should be updated by a

factor of 10 in favor of model MA; likewise, a Bayes factor of BAB = .1 means that prior

odds should be updated by a factor of 10 in favor of model MB. Bayes factors of

BAB =∞ and BAB = 0 correspond to infinite support from the data for one model over
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the other with the former indicating infinite support for model MA and the later

indicating infinite support for model MB. The deep meaning in Bayes’ rule is that the

updating factor on beliefs, the evidence in data, is the relative predictive accuracy of the

models. Because Bayes factors index the evidence for models from data, their use has

been recommended repeatedly for psychological research (e.g., Edwards et al., 1963;

Gallistel, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009; Wagenmakers, 2007).

The distinction between Bayes factors—the effect of the data to change beliefs—and

the posterior odds—the resulting beliefs themselves—is in our view intellectually

appealing. Two researchers may start with different prior odds. For example, Daryl Bem,

a proponent of ESP (Bem, 2011), may hold the ESP hypothesis to be as likely as a

no-ESP hypothesis. We, however, disagree, and have stated lower prior beliefs in the ESP

hypothesis than in the no-ESP hypothesis because there is no known mechanism for ESP

and the existence of ESP would require radical revisions to the laws of physics and biology

(Rouder & Morey, 2011; Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011). Even

though we may not come to an agreement with Bem over prior odds and consequently will

not agree on posterior odds, we may nonetheless agree on the evidence for these models

from the data, and, consequently, agree how to update our respective beliefs. Rouder &

Morey (2012) recommend researchers report Bayes factors as evidence. They may

additionally provide prior and posterior odds as value-added guidance, perhaps from

consideration of context.

Bayes factor is one of several Bayesian model comparison approaches. Alternatives

include inference by observation of critical posterior quantities (Aitkin, 1991; Gelman &

Shalizi, 2013; Kruschke, 2012) and selection with the deviance information criteria (DIC,

Spiegelhalter, Best, Carlin, & van der Linde, 2002). As previously mentioned, the

contrasts and comparisons among these methods is well represented in the literature and

interested readers may go to these papers and subsequent commentaries.
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ANOVA as a Hierarchical Model

We demonstrate here our Bayesian approach to ANOVA. Our modeling framework

is influenced by Gelman (2005), who conceptualizes ANOVA as a hierarchical model in

which effects are clustered within factors. We outline this approach, beginning with a brief

overview of Bayesian hierarchical modeling with a focus on the role of the prior.

Consider an investigator who is exploring whether numbers are represented as

analog magnitudes or as distinct symbolic categories (Dehaene, 2003; Gallistel & Gelman,

1992). A classic finding in this domain, first reported by Moyer & Landauer (1967) and

replicated repeatedly is the distance-from-five effect. The participant is presented a single

digit, say 4, and must judge whether this digit is less-than or greater-than five. Accuracy

is near ceiling in such tasks for most adults, and the main variable of study is response

time. Moyer & Landauer (1967) noted that in psychophysical experiments it takes longer

to compare two closely-related analog magnitudes, such as two similar weights (e.g.,

Falmagne, 1990). If numbers are represented as analog magnitudes, then one might

predict it would take longer to compare 4 to 5 than to compare 1 to 5. Hence, response

time should speed as the presented digit is further from 5. Moyer and Landauer report

such a distance-from-five effect where digits further from five are judged more quickly

than digits closer to five. This effect is considered a landmark finding supporting the

proposition that humans represent numerical magnitudes in an analog fashion.

We model the response times to digits as a function of their distance from five.

Digits 4 and 6 are nearest to five (distance 1); digits 3 and 7 are next nearest (distance 2),

and so on. For single digits between 1 and 9, there are four distance levels. Consider 40

participants performed judgments, each at a single distance level. For example 10

participants judged 4 and 6, another 10 judged 3 and 7, and so on. We will expand the

design to the mixed version where all participants judge all distances subsequently, but for

now, it is helpful to start with this simpler though less reasonable between-subjects design.
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We start with the following top-level model: Let Yij be the mean response time for the jth

participant in the cell with the ith distance condition. The model of mean response time

Yij = µ+ ci + εij ,

where µ is a grand mean, ci is the effect of the ith distance, εij is a zero-centered noise

term with variance σ2, and all the noise terms are independent. One immediate problem

with this model is that there are more parameters contributing to the cell means than

there are cell means, and, consequently, the parameters cannot be identified uniquely. A

standard approach is to add a sums-to-zero constraint (
∑

i ci = 0). With this constraint,

sample means may serve as estimators:

µ̂ = Ȳ , (3)

ĉi = Ȳi· − Ȳ , (4)

where Ȳ is the grand sample mean and Ȳi· is the sample mean for the ith cell. We refer to

the constraint as the sums-to-zero constraint and the above estimates as the sample-mean

estimators.

Bayesian analysis offers a different approach that outperforms the sums-to-zero

constraint. Consider the following prior specification for grand mean and effects:

µ ∼ Normal(0, σ2µ), (5)

ci ∼ Normal(0, σ2c ). (6)

The key constraint is that on ci. For reasonable settings of σ2c , say those on the order of

milliseconds-squared in this example, the ci parameters cannot be arbitrarily different. For

example, it is highly unlikely that the effect of distance is on the order of milliseconds for
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three of the levels and on seconds for the fourth. So long as σ2c is finite, then the model is

identifiable and estimable, and the smaller σ2c , the more constraint on the variation of ci.

One of the consequences of the shared prior on each ci is that estimates of ci are

smaller in magnitude than the sample-mean estimates from (4). These estimators are

known as shrinkage estimators because the estimate is “shrunk” toward a zero effect.

Shrinkage estimators are well known in both Bayesian and frequentist statistical

literatures (e.g., Efron & Morris, 1977; James & Stein, 1961), and in most situations are

more accurate than sample means (Stein, 1959). Figure 3 shows an example. In this case,

there are four levels, one for each distance, and the true means are shown on the top row.

These are equally spaced, that is, the true effect of distance is additive on response time.

Shown below are the data, and there are ten observations per level. The sample means are

shown below, along with Bayesian estimates with prior settings of σ2µ =∞ and σ2c = 1. In

this last row, we see shrinkage to the grand mean, that is, the Bayesian estimates are

closer to each other than the sample means are to each other. This shrinking results in a

lower root mean squared error (RMSE) in this case. Though a lower RMSE is not

guaranteed for all sample data, it does hold on average (James & Stein, 1961).

A key question is how σ2c should be set. If it is too large, then there is little

constraint and shrinkage. If it is set too small, then the means will be too constrained to

be similar and important variation across levels might be missed. In the next two sections,

we address the issue.

Effect Size, The Natural Place To Add Constraint

One helpful approach in setting the group-level variance is to reparameterize the

model in terms of effect size. In the previous mean-RT model, there is a separate

parameter for each level of the factor. This parameter has a unit of measure, the unit of

the dependent variable. For instance, if Y is response time, and it is measured in seconds,
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then ci is in seconds and σ2c , the parameter of the prior, is in squared seconds. Priors must

therefore be adjusted if one researcher uses seconds and another uses milliseconds.

Moreover, the priors must be specified for specific measures, and will change for other

dependent measures, say for scalp voltage or for IQ points. It is more desirable to specify

priors in a more standard fashion that is not so dependent on the unit of measure.

Fortunately, psychologists are well-versed in the solution to this

problem—parameterization through effect sizes. Effect size is a unitless number, and its

interpretation is the same regardless of the unit of the dependent variable. Consider the

following parameterization of the top-level of the one-way ANOVA model:

Yij = µ+ σdi + εij . (7)

Here, di is the effect size, di = ci/σ. Note that this model is equivalent to the previous

top-level model; the difference is in what the parameters mean, or the parameterization.

In the effect-size parameterization, noninformative priors may be placed on µ and

σ2, the parameters with units, but proper informative priors must be placed on effect size,

the parameter without units (Jeffreys, 1961). We take these prior specifications in turn.

The noninformative prior for µ is a flat prior with equal weight on all values; the

noninformative prior for variance is a flat prior on log σ2, that is, all values of the log of

variance are equally weighted (Jeffreys, 1961; Box & Tiao, 1973). Following Jeffreys, this

prior is expressed as

π(µ, σ2) ∝ 1

σ2
.

Mirroring the approach we took above, the prior on the effect size parameter di is

di ∼ Normal(0, gd). (8)
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This prior results in shrinkage for di. The question remains on how to set gd, the

variance of effect sizes. Some researchers simply stipulate it, say gd = 1. This choice is

reasonable because we have an intuitive understanding, and the notion here is that while

most effect sizes are a priori small, some will be large. The average spread, the standard

deviation, is 1.0. This choice, while informative, is reasonable for many experimental

contexts. In fact, the gd = 1 prior setting is made in the derivation of the BIC

goodness-of-fit statistic(Raftery, 1995). In our view, settings of
√
gd between say .2 and

1.0 seem defensible depending on the context. There is, however, a better approach.

A Hierarchical Model for Adaptive Shrinkage

A different approach is to treat gd as a parameter to be estimated from the data. If

there are large group effects in the data, then the dis will be well separated and gd will

tend to be large, and, importantly, there will be less shrinkage. If there are small group

effects, then gd will tend to be small and there will be more shrinkage. This adaptive

nature in shrinkage is one of the appeals of hierarchical modeling in frequentist and

Bayesian contexts (e.g., Efron & Morris, 1977). Not surprisingly, this hierarchical

specification is popular among Bayesian analysts; examples with linear models include

Bayarri & Garcia-Donato (2007), Gelman (2005), Liang, Paulo, Molina, Clyde, & Berger

(2008), and Zellner & Siow (1980).

When gd is treated as a parameter, a prior is needed for it. One convenient and

flexible choice is a scaled inverse χ2 distribution with a single degree of freedom (Zellner &

Siow, 1980). The density of this prior is

f(g;h) =
h2

2g3/2Γ(1/2)
exp(h2/2g),

where Γ is the gamma function (Abramowitz & Stegun, 1965). The constant h2 serves as a

tuning parameter that sets the a priori expected range of effect sizes. The key specification
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is the choice of h2, which must be set a priori. We can rewrite the model on d as:

d|gd ∼ Normal(0, gd),

gd ∼ Inverse χ2(1, h2)

Perhaps the easiest way of seeing the effect of this setting is to look at the influence

of h2 on d itself. To do so, we integrate out variation in gd, that is, we examine the

marginal distribution of d rather than the conditional one. This marginal distribution is a

scaled Cauchy distribution, which is also a scaled t distribution with one degree of

freedom. It too has a characteristic scale h. Figure 4A shows the prior distribution of

effect sizes d for a few choices of h. If this scale is set too small or too large, say h = 10 or

h = .02, respectively, then the marginal distribution has too little mass on reasonable

effect-size values. Good choices are .2 < h < 1. We use h = .5 as a default setting both

here and in our software. We recommend researchers tune the prior according to context.

In the discussion section, we consider how inference varies as a function of h.

Previously, we discussed how Bayes factors were ratios of predicted probabilities

under competing models. The one-way effect size model may be compared to a null model

given by Yij = µ+ εij . Figure 5 shows the construction of Bayes factors for the one-way

case with two levels for 30 observations. Figure 5A provides a representation of a null

model on d as well as the effects model—the marginal model on d for h = .5. Figure 5B

provides the predicted densities for different observed effect size. If the observed effect size

is large in magnitude, say at .5, then the predicted density is higher for the effects model

than the null model. Likewise, if the observed effect size is small in magnitude, say at .2,

then the predicted density is higher for the null model than the effects model. Figure 5C

shows the Bayes factor as a function of observed effect size. In the following development

we expand the ANOVA models to account for multiple factors, mixed designs, and fixed
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effects. In all cases, however, the mechanics of model comparison work the same.

Predictions for competing models are obtained by marginalizing over the parameters, and

the evidence for one model relative to another is the ratio of the densities of these

predictions evaluated at the observed data.

Multiway ANOVA: A Hierarchical Clustering of Factors

In factorial designs, experimental factors are manipulated through several levels

each. For example, consider a researcher who asks whether there is a numeric distance

effect for word-form number terms (e.g., “seven”) as well as digit-form number terms (e.g.,

“7”). This second factor is called here presentation—either the numbers are presented as

words or digits. If the factors are crossed, then there are four levels of distance and two

levels of presentation (words vs. digits). The design spans a total of 8 cells. For

concreteness, consider a design where 80 participants judge digits with 10 participants in

each cell. The critical questions are about whether there is a main effect of distance, a

main effect of presentation type, and an interaction between the two. We use the term

covariate in this context to refer to individual additive effects, say the main effect of

distance, the main effect of presentation, or the interaction.

We start with the following top-level model: Let Yijk be the response time for the

kth participant in the cell with the ith distance and jth presentation, i = 1, . . . , 4,

j = 1, . . . , 2, k = 1, . . . , 10. The top-level model of mean response times is

Yijk = µ+ σ[di + pj + (dp)ij ] + εijk,

where µ is a grand mean, di is the effect size of the ith distance, pj is the effect size of the

jth presentation, (dp)ij is the interaction term for the ijth combination of distance and

presentation, and εijk is a zero-centered noise term with variance σ2. As before, all error
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terms are independent. Models are placed on effect sizes as follows:

di|gd ∼ Normal(0, gd),

pj |gp ∼ Normal(0, gp),

(dp)ij |gdp ∼ Normal(0, gdp).

with

gd ∼ Inv χ2(1, hd), gp ∼ Inv χ2(1, hp), gdp ∼ Inv χ2(1, hdp).

This prior specification captures the notion of clustering effects within factors. Because

the model is hierarchical with a parent distribution across level effects within a covariate,

these level effects are correlated and shrinkage occurs. Yet, because there are separate

parent distributions for each covariate, the effects for one factor are independent of those

for the other. It is for this reason that Gelman (2005) describes ANOVA as being a

hierarchical clustering of effects within factors.

The flexibility in hierarchical clustering is well-suited for experimental psychology.

In many experiments, researchers combine disparate factors where effects may vary

considerably. The most common example is that people often vary greatly in their

performance while manipulations have a much smaller effect. For the numeric distance

effects, we can document three different effects all on different orders of magnitude. The

effect of people is the greatest, with different individuals having means that vary by 100s

of milliseconds. Distance effects typically span say 50 ms or so (Rouder, Lu, Speckman,

Sun, & Jiang, 2005). Other effects, say the effect of whether the previous trial was a word

or digit, are very small (< 10 ms) should they exist at all. In the hierarchical approach,

level effects within a factor, say that of distance, are expected to have about the same

scale or magnitude, and a distance effect of 200 ms would be unexpected and shrunk in

considerably. Yet, simultaneously, participant effects of 200 ms would not be shrunk
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nearly as much as this is an expected effect given the range of other item effects.

Shrinkage is adaptive, but with different adaptations for different factors. Hence, with the

hierarchical structure, researchers may run designs with factors that vary considerably in

potential effect sizes.

Fixed vs. Random Effects

The distinction between fixed and random effects has a long and somewhat

controversial history in statistics (for an enlightened discussion, see Gelman, 2005). It may

seem that effects in Bayesian models are random effects by default as each is a random

variable that has a prior distribution. In the current case, the effects within a factor are

treated as exchangeable, that is, they are treated explicitly as samples from a common

parent distribution over effects. This treatment reinforces the random-effects

interpretation, and with this interpretation, analysts can draw inferences not only about

the effect of each level, but about the population of effects as well.

There is, however, a critical distinction between fixed and random effects in

Bayesian analysis on the dimensionality of the model. In frequentist treatments, the

sums-to-zero constraints reduce the number of parameters by one per constraint. In a

one-way design, for example, there is a single sums-to-zero constraint that reduces the

dimensionality by one parameter. The simplest way to impose this constraint in a

Bayesian model is to consider only the first I − 1 effects and let the last one be the

negative of the sum of the rest. For example, if there are four distance effects, the effect

sizes for the first three levels may be parameters as d1, d2, and d3, and the remaining

effect size is simply d4 = −(d1 + d2 + d3) such that the sum of all four effect sizes is zero.

Priors are placed on parameters d1, d2, and d3, but not on d4 as this parameter is a

function of the other three. In this case, the dimensionality of the problem is reduced by

one parameter. This reduction is a form of constraint much like the hierarchical priors are
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a form of constraint. In this case, there is constraint provided by both the dimension

reduction and the hierarchical priors; for instance, the estimates of the I − 1 parameters

would be more diffuse if a flat prior rather than a hierarchical prior were used.

In practice, we do not eliminate one effect size. Instead we project the set of I main

effects into I − 1 parameters such that the sums-to-zero constraint holds and the prior

model on each effect is the same. These projections are more of a technical nicety, closely

related to orthogonal contrasts; the details are provided in Rouder et al. (2012). Readers

unfamiliar with projections need only note that they act like sums-to-zero constraints in

that they reduce model dimensionality.

The notion of modeling fixed effects as a reduction in model dimensionality extends

gracefully to interactions. In the above example with four levels of distance and two levels

of presentation, the unconstrained interaction covariate was comprised of eight levels. In

the usual fixed-effect treatment, separate sums-to-zero constraints are applied across rows

and columns of the interaction matrix resulting in five sums-to-zero constraints. These

constraints reduced the number of interaction terms to three from eight. Sums-to-zero

constraints can be applied to both factors if both are treated as fixed, or to one factor but

not the other if one but not the other is treated as fixed, or to no factors. Perhaps the

most interesting case is the one where one factor is fixed and the other is random. Here,

the treatment is equivalent to imposing sums-to-zero constraints on either rows or

columns of the interaction matrix, an approach advocated by Cornfield & Tukey (1956).

This leaves four different interaction models. If both factors are random, then there are no

sums-to-zero constraints resulting in eight interaction parameters. If distance is random

and presentation is fixed, then there are four separate sums-to-zero constraints, one for

each distance level, and a total of four interaction parameters. If distance is fixed and

presentation is random, there are two separate sums-to-zero constraints, one for each

presentation level, and a total of six interaction parameters. Finally, when both are fixed,
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there are separate sums-to-zero constraints for each row and column, but one of these is

redundant. Hence, there are five constraints and three interaction parameters.

Dimension reduction through sums-to-zero constraints is a different constraint than

the hierarchical clustering. The two constraints are not mutually exclusive and may be

applied simultaneously. One may impose the sums-to-zero constraint and then cluster the

resulting parameters hierarchically. For example, let d, p, and (dp) be vectors of I, J , and

IJ main effects and interactions, respectively, and let d∗, p∗, and (d∗p∗), be vectors of

I − 1, J − 1 and (I − 1)(J − 1) main effects and interactions after dimension reductions.

Then the following priors may be put on these effects:

d∗i ∼ Normal(0, gd),

p∗j ∼ Normal(0, gp),

(d∗p∗)ij ∼ Normal(0, gdp).

As before, the levels within a factor are related by the parent distribution, while there is

no such relation across levels of different factors. That is, the effects are clustered within

factors.

Should researchers use the reduced-dimension fixed-effects models or the more

heavily dimensioned random-effects models? The question to us is one of model

specification. Recall that models tend to be specified to help understand the structure in

data, and in particular, whether theoretically-motivated constraints tend to hold. In this

context, the sums-to-zero constraint provides a focus on differences between levels rather

than the levels themselves. In line with the conventional wisdom, this focus seems best

when the researcher wishes to learn about the particular levels in an experiment rather

than new levels not present in the experiment. Conversely, the more complicated

random-effects models may be used for generalizing to new levels.
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Between-Subjects, Within-Subjects, and Mixed Manipulations,

Designs, and Models

Experimental psychologists and statisticians have developed somewhat different

nomenclature for describing how experimental factors are crossed with participants. The

following is fairly conventional for experimental psychologists: If a factor is manipulated

in a between-subjects manner, then each participant observes one level of the factor.

Conversely, if a factor is manipulated in a within-subject manner, then each participant

observes all levels of the factor. In a between-subjects design, all factors are manipulated

in a between-subjects manner; in a within-subjects design, all factors are manipulated in a

within-subject manner, and in a mixed design, some factors are manipulated within

subjects while others are manipulated between subjects. Experimental psychologists will

refer to ANOVA as “between-subject,” “within-subject” and “mixed” if it applies to

between-subject, within-subject, and mixed designs, respectively. Moreover, experimental

psychologists do not count subjects as a factor when discussing designs. For instance the

design where distance and presentation are manipulated in a within-subject manner would

be referred to as a two-way design even though in the corresponding ANOVA, the

variation across participants and the variation within a participant are jointly modeled

with separate variance components. Statisticians in contrast would consider the design a

three-way design (with factors of people, distance, and presentation), and the

corresponding ANOVA model to be mixed. We adopt here the experimental psychologists’

nomenclature for within-subject and between-subject and mixed designs, but use more

standard statistical nomenclature to characterize the number of factors and type of model.

The hierarchical ANOVA model is perfectly set up to account for between-subject,

within-subjects, and mixed designs. If all factors are manipulated between subject, then

there is no need for a subject factor as the effect of subjects serves as an unidentifiable

part of the error variance. If any factor is within-subject, however, then it is possible to
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separate participant variability from residual error. In these cases, we add a factor for

people, and each person serves as a level. For example, if distance and presentation are

manipulated as within-participant factors, then the following top-level model may be used:

Yijk = µ+ σ[sk + d∗i + p∗j + (d∗p∗)ij ] + εijk,

where sk is the random effect of each subject. Note that the distance and presentation are

treated as fixed effects and have a reduced dimensionality. Also note the lack of

interactions between subjects and the other factors. This choice is discussed at length in

the next section. The specification of the model is completed with the following priors:

d∗i ∼ Normal(0, gd),

p∗j ∼ Normal(0, gp),

(d∗p∗)ij ∼ Normal(0, gdp),

sk ∼ Normal(0, gs),

which encodes independent pooling across participants.

Model Comparison Strategies

Conventional ANOVA is comprised of a series of top-down model selection steps.

Consider the two-way example above where the distance and presentation are varied. The

full model, that is the model with the maximal number of covariates is

Mf Yijk = µ+ σ[di + pj + (dp)ij ] + εijk. (9)

In conventional ANOVA as practiced by psychologists, the effect of one covariate, say the

main effect of distance, is tested while the other covariates are estimated freely. This
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approach may be considered a top-down model selection approach. The main effect of

distance is a comparison of the full model to a model with distance effects omitted, which

is given by

M1 Yijk = µ+ σ[pj + (dp)ij ] + εijk. (10)

If the top-level model compares favorably, then the main effect of distance is evidenced; if

the model without the distance main effect compares favorably, then the distance main

effect is unnecessary. Likewise, the main effect of presentation is obtained by comparing

the full model to

M2 Yijk = µ+ σ[di + (dp)ij ] + εijk, (11)

and the interaction is obtained by comparing the full model to

M3 Yijk = µ+ σ(di + pj) + εijk. (12)

Of course there are more models that may be considered, and the remainder is given

by

M4 Yijk = µ+ σdi + εijk, (13)

M5 Yijk = µ+ σpj + εijk, (14)

M6 Yijk = µ+ σ[(dp)ij ] + εijk, (15)

and a null model with no effects,

M0 Yijk = µ+ εijk. (16)
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Each of these models may be compared by Bayes factor. If a model without an effect is

most supported, say Yijk = µ+ σdi + εijk, then there is evidence for a distance effect and

evidence against a presentation effect.

One problem with considering all the models in a factorial design is the number of

such models grows alarmingly fast with increasing numbers of factors. A two-way design

provides for three possible covariates and for 8 possible models. A three-factor model

provides three main effects, three two-way interactions, and a three-way interaction. The

presence or absence of each of these 7 covariates yields 128 possible models. Four- and

five-factor designs yield 32,768 and about 2.1 billion models, respectively. Note that with

within-subject and mixed designs, the effect of subjects must be modeled as a factor, so

that three, four, and even five factor designs are not uncommon. For example, consider a

design in cognitive aging where a researcher wishes to study two manipulated factors

across younger and older adults. There would be four factors in the design with factors for

age and subjects in addition to the two manipulated factors. Consideration of thousands,

millions, or billions of models is computationally infeasible as well as intellectually

unappealing.

Fortunately, there are reasonable approaches for cutting down the number of models

under consideration. The first is to not test effects in nuisance variables. Consider the

variation across participants and items. This variation certainly needs to be modeled, but

it need not be tested. Hence, all models may include variation from these factors, and

models without this variation need not be considered. Such a reduction is common in

practice as researchers often do not report tests of these nuisance factors in experimental

settings.

A second complementary approach, discussed by Nelder (1998) and Venables (2000),

is to note that models with interactions but without corresponding main effects are often

not plausible. Model M6 is an example. In this model there is an interaction between
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distance and presentation without a main effect of either. To understand the plausibility

of such a model, consider a hypothetical context where a cross-over is believable. Suppose

we perform an experiment to explore how much people would be willing to pay for a pint

of vanilla ice-cream as a function of its sugar and fat content. Figure 6A shows a

hypothetical example of a balancing phenomenon. Here, the sugar and fat need to be

matched to maintain balance, otherwise the ice-cream tastes too sweet or too bland. As

such, perhaps the lack of main effects may seem plausible. To show that it is not, consider

Figure 6B which shows a more complete view of the relationship between sugar content,

fat content, and value of the pint of ice-cream. The inner most circle shows the highest

value, in this case above 6$ a pint, and the successive rings show lessening value. The

balance phenomena comes from the positive association: for each level of fat there is a

balancing level of sugar. The points, at values of 2.5$ and 5$, correspond to the points in

Figure 6A. For the shown levels there are no main effects. But, if the levels are chosen

differently, then main effects surely appear. That is, the lack of main effects here results

only for very carefully and precisely chosen levels, and main effects appear otherwise. In

application, we do not have the information in Figure 6B — otherwise, we would not need

to perform the experiment — and it seems implausible that one could fortuitously chose

levels to precisely cancel out the main effects. For the two-factor models above, we

exclude Model M1, M2, and M6 from consideration because they specify interactions

without a corresponding main effect for the interacting factors. In our software, discussed

next, the default is to exclude these models though this default may be overrode by

researchers who disagree with the exclusion.

A third approach for reducing the set of models is to exclude from consideration

models with subject-by-treatment interactions, or what is sometimes known as random

slopes. Consider a researcher who is assessing a distance effect and decides to include a

subject-by-distance interaction. For concreteness, we assume there are only two distances
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in the design: say digits 4 and 6 (one away from five) and digits 3 and 7 (two away from

five). The subject-by-distance interaction implies that there may be some participants

who have a true distance effect in the usual direction effect but others who have a true

effect in the reverse distance direction (faster responses for the smaller distance). Such

interactions make it difficult to interpret the main effects of distance. For instance,

suppose 60% of the population has a 20 ms reverse distance effect while 40% has a 60 ms

ordinary distance effect. There is an average 12 ms ordinary distance effect, yet this 12 ms

effect is not interpretable given that it mischaracterizes a sizable proportion of the people.

There are two approaches to dealing with this problem. The first is not to include these

interactions when assessing main effects of variables of theoretical interest. Eliminating

models with subject-by-treatment interactions is analogous to conventional analyses where

such interactions are part of the statistical error in the model. The second is to place

constraints on subject-by-treatment interactions much as is done in item-response-theory

models. To date, we do not know of the development of Bayes factors for constrained

interactions in factorial designs, and as such and for the time being, we recommend the

first approach of not considering subject-by-treatment interactions. As with any analysis,

exploratory data analyses and theoretical considerations can help analysts decide which is

the most appropriate approach for the problem at hand.

The three elimination strategies — not testing nuisance effects, eliminating models

with interactions and no corresponding main effects, and eliminating subject-by-treatment

interactions — reduces the number of models considerably. For example, in the four-factor

case above with factors of distance, presentation, age, and subjects, the strategy reduces

the number of models from 32,769 to 19.



Bayesian Analysis 27

Bayes Factor Computation

When researchers run factorial designs, they often wish to perform inference on

main effects and interactions. Although Bayes factors provide an ideal means of doing,

they may be difficult to compute in practice. The difficulty comes in the computation of

the predictions, that is, of the marginal probability of data conditional on a model,

Pr(Y | M). This marginal probability may be expressed as

Pr(Y | M) =

∫
θ∈Θ

Pr(Y | θ,M)π(θ) dθ,

where π(θ) is the prior. The term Pr(Y |θ,M) is the probability of the data at a given

parameter vector, the likelihood, and is often convenient to evaluate. Even so, the

integration, however, is often computationally difficult. If model dimensionality is small,

then the integral may be evaluated with standard numerical methods. The difficulty

occurs for larger dimension models, which, unfortunately, are common in even relatively

simple applications in psychological science. For instance, consider the previous example

with 4 distance levels and 2 presentation levels where the levels of each factor are crossed

with participants in a mixed design. Let’s say there are 20 participants. Even if we

consider all effects as fixed and exclude all participant-by-treatment interaction terms,

there are 31 parameters to integrate across. Numerical methods become increasingly less

reliable and more time intensive in these cases, so much so that it becomes inconvenient in

usual applications.

Fortunately, integration across the parameters for the presented ANOVA models is

tractable. The key insight provided by Zellner & Siow (1980) is that the integration of all

parameters save the g parameters may be expressed in an analytic form. The remaining g

parameters may be integrated out via a Monte Carlo simulation, and the computation of

the Bayes factors is fairly quick and precise at least for models with typically small
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number of factors. Rouder et al. (2012) provide the derivation of the computations, and

these are implemented in Morey & Rouder’s BayesFactor package for R. In the following

example, we show how the package may be used to compute Bayes factors in analysis.

Consider a hypothetical example where younger and older adults perform the

less-than-five task for the four distances and across the two presentation types. Distance

and presentation are manipulated within participants; age is manipulated between

participants. Each participant observes 25 trials in each of the 8 cells, and the eight cell

mean response times serve as the raw data for analysis. We describe analysis with R with

the BayesFactor package in the next section. Following, we discuss a new and evolving

statistics package, JASP, which is an open-source, user-friendly Basyesian-statistics

alternative to SPSS. JASP provides a graphical interface to the BayesFactor package, and

it may be used to compute Bayes factors without any knowledge of R.

Analysis in R with the BayesFactor package

Appendix A provides details on loading the hypothetical data set into R and

installing the BayesFactor package, which is used in the following analysis. Figure 7

shows the cell means for the hypothetical example. Visually, the trends suggest a main

effect of age, distance, and presentation, and, perhaps, an age-by-distance interaction.

Table 1 provides the conventional ANOVA analysis. There is a significant main effect of

distance (F (3, 144) = 30.9, p < .05) and a significant age-by-distance interaction

(F (3, 144) = 6.4, p < .05). No other effects are significance, including the main effect of

age.

The Bayes factor ANOVA can be performed using the anovaBF function:

bf = anovaBF(rt~a*d*p+s, data = dat, whichModels="withmain",

whichRandom="s", iterations = 100000)

where the variable bf stores the result. The result of a Bayes factor analysis is not
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simply a table; the object bf contains all the information necessary to compare any two

models, to estimate parameters from any specific model, and to reproduce the analysis.

It is helpful to sort the models in bf so that the models will be presented in order of

the magnitude of their Bayes factor:

bf=sort(bf, decreasing = TRUE)

bf

The result of the Bayes factor ANOVA is shown in Table 2. There are 18 lines, one

for each of the 18 non-null models. The number of models reflects not only the model

formula — which in this case includes four factors — but the options whichModels and

whichRandom. Option whichRandom indicates which factors are random, and these factors

are not tested and enter in only as main effects for the reasons discussed previously. The

option whichModels indicates how the hierarchy of models is to be constructed. For

ANOVA, there are three options of interest: the default withmain, all, and top. Option

all constructs a hierarchy with all possible models except for interactions with random

factors. In this case, it would include three additional models where an interaction

between two factors is present but at least one of the main effects is missing. Option

withmain is similar to all, but it excludes all those models where interactions are present

without corresponding main effects. Option top includes the most general model and one

where a single covariate is removed. This option is most similar to classical ANOVA where

contrasts are made top-down with the inclusion of all other covariates. We recommend

that the default option, withmain, be used so that difficult-to-interpret models are

excluded; however, analysts may wish to use one of the other settings in specific

circumstances. Finally, the argument iterations controls the number of iterations

performed by the estimation algorithm.

The first column in the table provides the models for comparison, and second

column provides the Bayes factor relative to a common comparison model, defined on the
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last line indicated by the “Against Denominator” label. In this case, the denominator is

rt ∼ µ+ subjects + ε. More generally, the null model includes the grand mean, the noise

terms, and any random effects indicated by the “whichRandom” option to the function.

These random effects are common in all models, and the focus is squarely on assessing the

evidence for the fixed effects. Consider, for example, the 15th model, which is

rt ∼ µ+ age + subjects + ε. The Bayes factor is the comparison of this model against the

null model with no age effect, and this age-effect model is less preferable to the null model

by 0.69-to-1. The last column shows the estimated error from the numerical integration

that is used to estimate the Bayes factor. For some of these models, the errors seem large;

however, in comparison to Bayes factor values they are not particularly worrisome.

Greater precision may be had by initially increasing the number of iterations (with the

iterations argument to the function) or sampling additional iterations with the

recompute function. Details are available in the BayesFactor manual.

To draw inferences from the output, it is helpful to focus on the most preferred

model, the one with main effects of distance and age and an interaction between the two.

One way we can assess the evidence for each covariate by comparing this most preferred

model with one missing the covariate in question. For example, the evidence for the

age-by-distance interaction is comprised of the Bayes factor between the 1st (winning)

model, and the 4th model, the best-fitting model without the interaction. The Bayes

factor values relative to the null are 1.7× 1016 and 3× 1014, respectively. The ratio of

these values is about 56-to-1, which is the Bayes factor of the winning model relative to

the one without the interaction. This value serves as the evidence in favor of the

age-by-distance interaction; the interpretation is that there is substantial evidence that

older adults have a larger distance effect than younger adults. The same process yields

evidence for the inclusion of age (a comparison of the winning model to the 4th model

yields a Bayes factor of 56-to-1), and for the inclusion of distance (a comparison of the
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winning model to the 15th model yields a Bayes factor of 2× 1016-to-1).

Bayes factors may also be used to state evidence against effects as well: that is,

evidence for invariances. The winning model did not include the factor of presentation

type, indicating evidence that the results were invariant to whether the stimuli were digits

or words. The strength of the evidence for this invariance is given by the comparison of

the winning model to the best model with presentation included, the 2nd model. The

Bayes factor is 5-to-1, which is positive evidence for the invariance or lack of an effect.

The Bayes Factor package includes a number of useful utilities. For example, the

command head(bf) will produce output for the six most preferred models. Bayes factors

may be plotted as well, and Figure 8 may be obtained in the Bayes factor package with

the command

plot(head(bf))

The above comparison approach is based on selecting the best model and comparing

it to competitors to state the evidence for or against main effects and interactions. An

alternative approach, based on model averaging, is discussed in Appendix B.

Analysis in JASP

JASP is designed to be a user-friendly, open-source replacement for SPSS that

performs Bayesian analysis (Love et al., n.d.). The main advantage of JASP for Bayesian

inference is that it is easy-to-use and requires no special knowledge. It makes use of simple

menus and boxes, and may be mastered quickly by researchers with familiarity with SPSS

or Excel. Currently, JASP has functionality for performing t-tests, ANOVA, regression,

and cross-tabulations. JASP uses the BayesFactor package as a back-end computational

engine. Consequently, it serves as a graphical interface for Bayes-factor computations.

JASP is freely available at http://jasp-stats.org.
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Because JASP is a menu-driven, graphical interface, the explanation of how to use it

is best provided as a screencast (https://www.youtube.com/watch?v=wVJemH3GIlI).

The screencast uses the above lexical-distance-effect example. Data can be loaded into

JASP in a comma-separated format (.csv); see the Appendix for details on the location of

this file. Figure 9 shows a screen shot from the analysis. The top row shows the menus,

and ANOVA has been selected. Much like SPSS, variables are identified by dragging from

one box to another. The right side shows the output. The top-right box, which is

highlighted, shows Bayes factors for all the models. It provides the same values as

provided in Table 2. The bottom-right box shows the model-averaged probabilities on

factors and interactions and is discussed further in Appendix B.

The Role of The Priors Revisited

The main goal in the above analyses is to compute Bayes factors for different

ANOVA models that encode effects and invariances of factors. In Bayes factor

computation, the prior plays a critical role, and in fact, we use different priors on effect

sizes to specify different models. The prior settings of note in all models are those on the g

parameters. These g parameters determine the a priori dispersion of effects around zero.

At first glance it may seem wise to specify priors that favor large values of g, or a large a

priori variance on effect sizes. Such a view may be seen as “noninformative” as a

researcher does not commit to any particular range of effect sizes. Yet, this prior setting is

unwise. As DeGroot (1982) notes, wide priors do contain a commitment or information,

but the commitment is to very large effects. If prior mass is spread across unreasonably

large effect sizes, there must necessarily be little prior mass on reasonable ranges, say for

effect sizes less than 3.0 in magnitude. If moderate effect sizes are observed, say those

around .5, then they are more compatible with a null-effect model than with one that a

priori overweights large effect sizes. Therefore, it is critical that the prior on g be
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judiciously chosen rather than arbitrarily wide. Figure 4 showed how h, the scale on the

variability of effects, tunes the marginal prior on effect size. The useful range is between

h = .2 and h = 1.

Choosing an appropriate prior is a thoughtful process about which there are

different prevailing views (Berger, 2006; Goldstein, 2006). We tend to think that the prior

should reflect a reasonable set of beliefs informed by context and the literature (Dienes,

2014). In the above example, we used a default scale, which is a scale of h = .5 in version

0.98 of the BayesFactor package. This prior places mass in reasonable ranges without

being overcommitted to any one point. Further justification for this default choice comes

from consideration of previous research in distance effects, where effects span about 50 ms

from a distance of 1 to a distance of 3 (Rouder et al., 2005). This 50 ms effect is recast as

a ±25 ms from grand mean. Participants have about 200 ms of variability, and given that

there are 25 trials per cell, cell means have about 40 ms in variation. Hence, we expect

effects on the order of 25/40 or about .62. So, overall, the default value of .5 is quite

reasonable for these types of data. We note that the value of the resulting Bayes factors

are quite stable across a range of reasonable settings, and variation in Bayes factors across

reasonable differences in prior settings should be accepted as part of the value-added

nature of modeling in analysis.

The fact that Bayes factors are dependent on prior settings has fueled the critique

that they are too subjective (e.g., Liu & Aitkin, 2008; Gelman & Shalizi, 2013; Kruschke,

2013). We think this critique is misguided for two reasons. First, the prior setting is seen

as part of the alternative model, and the need to specify the alternative carefully and

judiciously should be seen as part of good modeling. Second, specification at this level is

necessary for models to yield predictions on data. The fact that well-specified data

actually predict constraint on data is appealing. Evidence for the null should be calibrated

against a belief in how big effect sizes would be if the null was false, and the dependence
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of the Bayes factor on prior settings captures this intuition. The parameterization of

ANOVA in effect sizes makes choosing a judicious alternative relatively straightforward.

Figure 4B shows how setting h affects the Bayes factor value for a t-test. As can be seen,

the Bayes factors do change with the setting of h, but not drastically so. In fact, the

Bayes factor is far more sensitive to the t-value than the prior setting. This dependence of

inference on reasonable variations in tuning is desirable. Researchers should be able to use

their expectations as part of model specification to add value by calibrating inference.

All commands that produce Bayes factors in the BayesFactor package have an

option for setting this scale h on effect sizes.

Conclusions

ANOVA remains the workhorse of experimental psychology. The Bayes factor

approach highlighted in this report provides researchers with a principled approach to

state relative evidence from data for or against effects and invariances. Models that

encode effects and invariances are proposed, and the evidence is the probability of the

data for a given model relative to that for an alternative model. This odds ratio is directly

interpretable much as the odds ratio of a horse race is directly interpretable. Because the

odds are directly interpretable, they may be reported without any further qualification

and without reference to decision-making criteria. That is, if a researcher finds a Bayes

factor of 2-to-1, such a value may be reported as is, and then the researcher can engage

the reader in an argument over interpretation. For example, it may be judicious to

consider a value of 2-to-1 unpersuasive if the effect is an extrasensory perception effect

because such an effect if true would be in contravention of theories of physics and biology.

Yet, it may also be judicious to be quite concerned about a value of 2-to-1 in a different

context, say if the goal is to assess the effectiveness of controlling a confound through

matching. Bayes factor evidence should not be evaluated by strict criterion, but in
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reference to the context and goals of the researcher.

The ANOVA approach provided here is similar to that of Gelman (2005) who uses

separate variance components for each covariate. The approach differs from Gelman in

that the effect of the covariates is assessed through Bayes factors. To make the Bayes

factor computationally convenient, we use the g-prior approach of Zellner & Siow (1980),

and for ANOVA, use a separate g parameter for each factor.

Psychologists have not stressed the importance of stating evidence for invariances.

Some such as Cohen (1994) and Meehl (1978) argue that true invariances never exist,

others such as Cumming (2014) argue that cataloging effect sizes and confidence intervals

is all that is needed. We briefly address these points: First, there is a sense in which

advocacy of Bayes factors is not threatened with an a priori belief that invariances do not

hold. Those who wish to replace the invariances with models in which effect sizes vary in

a constrained equivalence region or with order restrictions are free to do so, and Morey &

Rouder (2011) and Morey & Wagenmakers (2014) develop Bayes factors for these

respective cases. Second, the claim that invariances never hold should be testable in

principle. In fact, Bayes factors provide an ideal test of the proposition. One can compute

the Bayes factor evidence for the invariance against other alternatives, say one in which

the effect size is presumed small but nonzero. In this manner researchers who believe that

invariances do not hold can attempt to build data-driven evidence for the position rather

than assert it as a matter of faith. Third, even if invariances never hold they are still

useful. Consider by analogy the invariances in physical laws, say the law that planets

circle the sun on an ellipse. It is true that at some level this law is violated due to the tug

of other planets and the presence of friction from interstellar materials. Even so, the

platonic form of the law is exceedingly useful in uniting mechanics on earth with those in

space. Stating invariances, even when they hold only approximately, will assuredly lead to

better theory development. The alternative approach that has garnered recent attention,
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the presentation of effect sizes and associated CIs, is desirable because there is never any

abstraction of these effect sizes in theoretical terms (Morey, Rouder, Verhagen, &

Wagenmakers, in press). We believe that it is this abstraction into effects and invariances

that will drive better theoretical development, and this belief serves as additional

motivation for adopting Bayesian model comparison.
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Appendix A

The hypothetical data may be found at

http://pcl.missouri.edu/exp/aovExample.txt and can be read into R using the

read.table function:

dat=read.table(url('http://pcl.missouri.edu/exp/aovExample.txt'), head=TRUE)

After reading in the data and prior to the analysis, it is recommended to check that

all columns representing categorical factors are understood by R to be factors:

dat$s=factor(dat$s)

dat$a=factor(dat$a)

dat$d=factor(dat$d)

dat$p=factor(dat$p)

The classical ANOVA in Table 1 can be obtained with the following R command:

aovResult=aov(rt~a*d*p+Error(s/(d*p)),data=dat)

summary(aovResult)

In order to install the Bayes factor package, the install.packages function is used:

install.packages('BayesFactor', dependencies = TRUE)

The install.packages function only needs to be run once; so long as the package

is installed, one can load it with the library function:

library(BayesFactor)

This command that loads the library must be run at the beginning of every session

in which BayesFactor will be used.

The data file to use for JASP is found at

http://pcl.missouri.edu/exp/Lessthan5.csv.
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Appendix B

An alternative approach to making statements about factors is to use Bayesian

model averaging. In this approach models may be given a priori probabilities, perhaps the

19 models under consideration would be given a priori probabilities of 1/19. Then these

prior probabilities are converted into odds, updated via multiplication by the Bayes factor,

and reconverted to become posterior probabilities. Models may then be partitioned

according to whether they do or do not contain a factor. For example, consider the

invariance to presentation. The following models do not contain any effect of presentation:

the null model, Model 1, Model 4, Model 5, and Model 15. The posterior posterior

probabilities derived from the Bayes factors for these models are about 0, 0.752, 0.014,

0.013, and 0. The total posterior probability across all of these models that do not contain

the presentation effect is 0.779, and the complement of this value is the probability across

all models that do contain a presentation effect. We may compute posterior odds for this

total probability, which is 3.518. To compute a composite Bayes factor for the invariance,

we may total up the prior probabilities on the models that do not contain the effect, 5/19,

and convert it to prior odds (0.357). The Bayes factor for the invariance is just the

posterior odds (3.518) divided by the prior odds (0.357), and it evaluates to 10-to-1. JASP

provides prior and posterior model-averaged probabilities and Bayes factors in the

bottom-right output panel under the columns P(inc), P(inc|Y), and BFInclusion,

respectively. Keep in mind, however, that this estimate is sensitive to Monte Carlo error.
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Df Sum Sq Mean Sq F value Pr(>F)

a 1 0.7911 0.7911 2.7644 0.1029
Residuals 48 13.7369 0.2862

d 3 0.1559 0.0520 30.8855 0.0000
a:d 3 0.0323 0.0108 6.3971 0.0004
Residuals 144 0.2422 0.0017

p 1 0.0023 0.0023 1.3459 0.2517
a:p 1 0.0007 0.0007 0.4259 0.5171
Residuals 48 0.0806 0.0017

d:p 3 0.0017 0.0006 0.3581 0.7833
a:d:p 3 0.0028 0.0009 0.5921 0.6212
Residuals 144 0.2299 0.0016

Table 1
The classical ANOVA results for the hypothetical example.
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## Bayes factor analysis

## --------------

## [1] a + d + a:d + s : 1.687919e+16 9.62%

## [2] a + d + a:d + p + s : 3.508808e+15 8.37%

## [3] a + d + a:d + p + a:p + s : 1.166088e+15 34.25%

## [4] d + s : 3.035337e+14 0.26%

## [5] a + d + s : 2.971541e+14 30.92%

## [6] a + d + a:d + p + d:p + s : 1.170903e+14 3.7%

## [7] a + d + p + s : 7.550958e+13 1.98%

## [8] d + p + s : 6.304038e+13 0.64%

## [9] a + d + a:d + p + a:p + d:p + s : 2.358671e+13 5.16%

## [10] a + d + p + a:p + s : 7.469271e+12 10.09%

## [11] d + p + d:p + s : 2.361781e+12 1.36%

## [12] a + d + a:d + p + a:p + d:p + a:d:p + s : 2.214369e+12 5.57%

## [13] a + d + p + d:p + s : 1.562008e+12 10.65%

## [14] a + d + p + a:p + d:p + s : 540292602711 4.5%

## [15] a + s : 0.6918868 4.88%

## [16] p + s : 0.1814085 0.57%

## [17] a + p + s : 0.1155655 3.48%

## [18] a + p + a:p + s : 0.03811532 1.79%

##

## Against denominator:

## rt ~ s

## ---

## Bayes factor type: BFlinearModel, JZS

Table 2
The Bayes factor ANOVA results for the hypothetical example.
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Figure Captions

Figure 1. Updating with Bayes’ rule. A, B: Prior and posterior for 7 heads in 10 flips and

for 70 heads in 100 flips, respectively. C, D. Updating factors for 7 heads in 10 flips and

70 in 100 flips, respectively.

Figure 2. A, B: The probability of outcomes under the general model, MA and under the

fair-coin model, MB, respectively. C: The ratio of these probabilities is the Bayes factor

between the models. This ratio is plotted on a log scale.

Figure 3. The effect of shared priors is to shrink estimates away from extreme values. The

top row shows four true mean values, which are equally spaced on the axis of

measurement (time). The data, comprised of 10 observations per level, are shown directly

below the true means, and there is a separate line for each group. Conventional sample

mean and shared-prior estimates are shown at the bottom, and the shrinkage of the

shared estimates toward the grand mean is evident.

Figure 4. The key specification in the ANOVA models is the scale of variability in effect

sizes, h2. A Distribution of effect size for four values of h. Values of h = 10 and h = .02,

top left and bottom right panels, respectively, are too extreme to be useful. Values of

h = 1 and h = .2, top right and bottom left panels respectively, serve as reasonable limits

in most contexts. B Bayes factor as a function of prior specification (h) shows that while

the specification matters as it must, the changes across reasonable specifications (shown as

the shaded area) are not great, especially when compared to the sensitivity of the Bayes

factor on the data (t-values). The sample size of the data is N = 50.

Figure 5. The construction of Bayes factors for the one-way model with two levels. A The

null and effect models on effect size (h = .5). B. The predictive densities for each model.

C. The Bayes factor as a function of observed effect size.
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Figure 6. A. An interaction without a main effects for the price offered for a pint of

ice-cream as a function of sugar and fat content. B. The same dependency across a

continua of levels. From this panel it is clear that the lack of main effects reflects an

implausibly fortuitous choice of levels.

Figure 7. Cell means for the hypothetical data set in which age (younger vs. older adult),

distance (1 through 4), and presentation (digit vs. word) served as fixed effects and people

served as random effects. Age entered as a between-subject variable while distance and

presentation were manipulated in a within-subject fashion.

Figure 8. Bayes factors for the six most preferred models. The Bayes factors are relative

to the null model with participant random effects. The (very small, barely visible) error

bars show the estimation error for each Bayes factor.

Figure 9. A screen shot from JASP, an easy-to-use graphical statistical package that

provides Bayesian inference. JASP uses the BayesFactor package and is suitable for

researchers more comfortable in SPSS than R. Variable selection is straightforward, and

multiple output panels allow researchers to make nuanced statements about their data.
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