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 ABSTRACT. Analysis of covariance is often conceptualized as an analysis of variance of
 a single set of residual scores that are obtained by regressing the dependent variable
 on the covariate. Although this conceptualization of an equivalence between the two
 procedures may be intuitively appealing, it is mathematically incorrect. If residuals are
 obtained from the pooled within-groups regression coefficient (bw), an analysis of
 variance on the residuals results in an inflated ac-level. If the regression coefficient for
 the total sample combined into one group (bT) is used, ANOVA on the residuals yields
 an inappropriately conservative test. In either case, analysis of variance of residuals
 fails to provide a correct test, because the significance test in analysis of covariance
 requires consideration of both bw and br, unlike analysis of residuals. It is recom-
 mended that the significance test of treatment effects in analysis of covariance be
 conceptualized, not as an analysis of residuals, but as a comparison of models whose
 parameters are estimated by the principle of least squares. Focusing on model com-
 parisons and their associated graphs can be used effectively here as in other cases to
 teach simply and correctly the logic of the statistical test.

 One of the goals of most higher level statistics courses is to have the student

 perceive certain fundamental relationships between various statistical tech-
 niques such as the one between analysis of variance (ANOVA) and regression.
 ANOVA and regression meet, of course, in the analysis of covariance
 (ANCOVA), a topic that many students have difficulty mastering. It is easy
 for the student to miss the logic of the procedure by an overemphasis on
 computational formulas. To counter this difficulty, some instructors and
 authors, in explaining ANCOVA, make use of the notion of analyzing residual
 scores. Residual or error scores can be used effectively in explanations of
 ANCOVA and other statistical techniques; unfortunately, an equivalence that
 some think exists between ANCOVA and the analysis of variance of a set
 of residuals actually is illusory and needs to be eliminated from pedagogy
 concerning ANCOVA.

 197
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 ANCOVA frequently has been erroneously presented as an ANOVA of a
 set of residual scores that are obtained when the dependent variable is re-
 gressed on the covariate. To cite one instance, in discussing an example in
 which IQ is used as a covariate and the scores students earn on a posttest are
 the values of the dependent variable, Marascuilo (1971) states,

 Covariance adjustment is equivalent to projecting the earned score in a
 direction parallel to the regression line to the IQ score defined at X [where
 X is the grand mean for the covariate]. This parallel projection is per-
 formed for all pairs of observations and an analysis of variance is then
 performed on the adjusted scores (p. 499).

 Although the correct computational formulas for ANCOVA are invariably
 presented, a misleading reliance on the notion of analyzing a set of residuals
 is a common pedagogical device for introducing ANCOVA. Among authors
 who take this approach, some leave open the possibility that the analogy is not

 exact; others explicitly maintain that the two procedures are identical. Snede-
 cor and Cochran (1967) illustrate the first approach when they state that, "The

 analysis of covariance is essentially an analysis of variance of the quantity (Y -

 bX)" (p. 424) [emphasis added]. Cohen and Cohen (1983) illustrate the more
 explicit approach in their text when they say,

 The ACV [ANCOVA] involves the analysis of (the residuals of) Y when
 one or more other variables (the covariates) have been partialed out. ... In
 ACV [ANCOVA], the residual that is analyzed is Y - YA for each sub-
 ject.. . in exactly the same way as Y itself is analyzed in AV [ANOVA]
 (p. 318) [emphasis added].

 Similar statements can also be found in such sources as Dixon and Massey
 (1969, p. 223), Pedhazur (1982, pp. 496-497), and Lindquist (1953, p. 318).
 Of course, these authors are aware that ANCOVA and an analysis of variance
 conducted on the residuals (hereafter called ANORES) will be slightly differ-
 ent because the ANORES will have one additional but artificial degree of
 freedom. With an adjustment of the ANORES degrees of freedom, students
 are almost certain to get the impression that ANCOVA and ANORES should
 be identical. This seems to be what at least some authors intend.

 That they are not identical thus needs to be emphasized. It is the purpose
 of this paper to develop the way in which ANORES and ANCOVA differ.

 It also should be noted, though, that there clearly is evidence for a second,
 distinct approach to training students regarding the relationship between AN-
 COVA and ANORES. This is illustrated by the tack taken in writings by
 Werts and Linn (1970) and Corder-Bolz (1978). These writers are explicit
 about the fact that the two procedures differ, but suggest that ANORES is
 used by many as a viable alternative to the analysis of data that could be
 analyzed by ANCOVA. For example, Werts and Linn suggest that the "tradi-
 tional procedure" for analyzing pre-post designs is "to remove the effect of
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 initial status by regressing the final score on the initial score, yielding the
 deviation of the final score from its predicted value. This deviation score is
 then used to find the correlates of change" (p. 17). Thus, students exposed to
 this approach to teaching about ANCOVA and ANORES might not conclude
 that one method is right and the other wrong, but may come to the conclusion
 instead that the procedures represent two viable analyses, either of which
 could be legitimately carried out on a given set of data. We believe that would
 be an erroneous conclusion. In fact, it is a second purpose of this paper to
 argue that when ANCOVA could be validly applied to particular data, ANO-
 RES would not be appropriate.
 The problem will be approached by taking a perspective that works effec-

 tively in many other cases as well, namely by focusing on the model compar-
 ison implicit in the statistical test and using graphs to picture the models' fit
 to the data. Residuals are used, but one must consider the two models in-
 volved in the computation of two sets of residual scores. A focus either on the

 implied model comparison or on a geometrical representation of the alterna-
 tive analyses makes clear the ways in which ANORES differs from ANCOVA.
 A numerical example illustrating the difference between the two procedures
 will be presented at the end of the paper.

 ANCOVA

 The analysis of covariance test of group differences can be conceptualized
 as the comparison of the following full (F) and restricted (R) models:

 Full: Yq = j + j + PX, + E1 (1)
 Restricted: Yj = + 3Xij + Eij (2)

 where Y is the score on the dependent variable of the ith subject in the jth
 group, R is a "grand mean" parameter (appropriately thought of as the inter-

 cept in Equation 2 or the mean of the intercepts in Equation 1), cj is a
 parameter indicating the effect of the jth treatment, 3 is a population re-
 gression coefficient, X1j is the score on the covariate for the ith subject in the
 jth group, and Ei is an error term for the ith subject in the jth group. The
 models are compared by using least squares to estimate each parameter in
 each model and then comparing the error sum of squares (SSE) for the two
 models. The SSE's are based on the individual errors determined uniquely for
 that model, that is, the errors used are the deviations of the observations from

 the predictions computed using the numerical estimates of the parameters in
 that model. With the usual ANCOVA assumptions (see, e.g., Elashoff, 1969;
 Glass, Peckham, & Sanders, 1972), the following expression has a central F
 distribution with k - 1 and N - k - 1 degrees of freedom if the null hypothe-
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 sis of no treatment effects is true (k is the number of treatment groups and N
 is the total sample size):

 F [SSE(R) - SSE(F)]/(k - 1)
 SSE(F)/(N - k - 1)

 The model comparisons approach makes clear that the F test in ANCOVA
 is a function of the extent to which scores on the dependent variable can be
 more accurately predicted if group membership is known than if it is not,
 where prediction is performed in both models by using least squares. Of
 crucial importance later in our argument is the estimation of p in the full and
 restricted models.

 A common misconception among students when first presented with these

 models seems to be that because both models contain a 13 parameter, the least
 squares estimate of p in the full model will be identical to the least squares
 estimate of 1 in the restricted model. However, in the full model the estimator
 is bw, the pooled within-groups regression coefficient for Y regressed on X,
 whereas in the restricted model the estimator is bT, the regression coefficient

 for Y on X for the total sample of observations combined into one group. In
 the absence of group membership parameters, optimal prediction is obtained
 by using bT as the slope coefficient, whereas when different intercepts for each

 group are allowed for by the introduction of group membership parameters
 but a common slope of Y on X is assumed, optimal prediction is obtained by
 using bw. It should be noted that rarely will bw = bT . Even the corresponding

 p parameters being estimated (i.e., 1 in the full and restricted models, re-
 spectively) will themselves differ unless the null hypothesis is exactly correct
 or the mean on the covariate is exactly the same in each group. Of course, even

 if the 1 parameters were the same, bw and br would almost certainly differ
 because of sampling variability.

 The distinction between bw and bT, as well as the introduction of bB, the
 between groups regression of Y on X , often is difficult to explain to students
 when relying on extensions of the ANOVA approach, and hence contributes
 to the confusion surrounding ANCOVA. In contrast, the model comparisons
 approach (cf. Namboodiri, Carter, & Blalock, 1975; Searle, 1971) making the
 utilization of least squares explicit shows why it is necessary to define both bw
 and bT to discuss ANCOVA. However, bB is not a least-squares estimator of
 either the p in the full model or the P in the restricted model, and thus does
 not necessarily need to be introduced in teaching ANCOVA. In fact, bB seems
 to be of limited value in general, except when multilevels of unit of analysis
 are considered. For example, analyses might be conducted both at the level of
 students and classrooms, in which case bB might be of interest. For further
 discussion, see Burstein, Linn, and Capell (1978).
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 ANORES

 ANORES can also be conceptualized in terms of model comparisons. One
 virtue of this approach is that it necessitates explicit consideration of how the
 residuals are to be obtained, because either bw or bT could be used to define

 a residual score. Cohen and Cohen (1983, p. 318) argue that bw should be
 used. This also seems to be the intent of Pedhazur (1982, especially equa-
 tions 13.1 and 13.2, pp. 496-497). However, because none of the other previ-
 ously referenced sources have stated which coefficient should be used, we will

 examine both, beginning with bw. The residual score for the ith subject in the

 jth group can then be written as Y0- bwX1j. The full and restricted models
 compared by ANORES using bw, which will be denoted models FW and RW,
 respectively, may then be written as follows:

 FW: Yi i- bwXi = ?L,+ Otj + Eij (4)
 RW: Y, - bwXj = + e . (5)

 The significance test is again obtained by comparing the error sum of squares
 for the two models as follows:

 F SSE(RW) - SSE(FW)]/(k - 1)
 SSE(FW)/(N - k - 1)

 The term N - k - 1 appears as the denominator degrees of freedom because
 p has been estimated to obtain the residual scores. The relevant question at
 this point is how this F test relates to that in Equation 3 from ANCOVA, which

 translates to how the errors associated with the models compare. First, con-
 sider the relationship between the ANCOVA full model and the full model for

 ANORES using bw. It can be shown that SSE(F) equals SSw for ANCOVA,
 that is, the adjusted within-group sum of squares, which in turn equals (see
 Kirk, 1982, p. 723):

 ss= - Z(ij - )2 b2 (xi - )2 (7)
 j i j i

 The error sum of squares for model FW, on the other hand, is the within-group

 sum of squares for the dependent variable Yij- bwXij. Since

 SSE(FW) = .E[Yi - bwXj- (1 - bwXj)]2 (8)
 and

 C (gX, - X )(Yij - Y)

 bw= _)2 (9)
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 algebraic manipulation leads to

 SSE(FW) = >C (Yq - -)2 _ b? wL (X, - X )2 = SSE(F). (10)

 Consider next the relationship between the restricted models for ANCOVA
 and ANORES - bw, which we have denoted models R and RW, respectively.
 In model R, estimates for ?i and 0 are arrived at so as to minimize the error
 sum of squares for such a two-parameter model. In model RW, however, only
 p is estimated through least squares. This estimate is given by

 A = Y- bwX. (11)

 It must be the case that SSE (RW) 2 SSE (R), because least squares for model
 R could always "choose" i to be as in (11) and 1 = bw, duplicating the
 estimates of model RW; otherwise, the estimates of model R will differ and

 provide a better fit to the data, yielding a smaller error sum of squares, for this
 is precisely the goal of the least squares procedure. Reference to the formulas
 for the F test in ANCOVA (Equation 3) and ANORES (Equation 6) reveals
 that the observed F ratio for ANORES must be at least as large as the F for

 ANCOVA, because SSE(F) = SSE(FW) but SSE(RW) > SSE(R). The ex-
 tent of the discrepancy will depend on the extent to which bw differs from bT;
 it can be shown that

 SSE(RW) = SSE(R) + (bw - bT)2 j> (X - I)2. (12)
 j i

 This relationship shows that the test given in Equation 6 is not a legitimate
 F test, because the sampling distribution of the statistic differs systematically
 from the sampling distribution of the proper test statistic. The reason that
 Equation 6 is inappropriate is that the numerator expression is not distributed

 as a chi-squared random variable with k - 1 degrees of freedom. This can be
 seen clearly by considering the distribution of the numerator and denominator

 of the correct ANCOVA test. We know that under the ANCOVA assump-
 tions, SSE(F) for ANCOVA (see Equation 3), and hence SSE(FW) for
 ANORES with bw (see Equations 6 and 10), when divided by o2, that is, by
 the variance of the residual scores Eij in the ANCOVA full model, is distributed
 as a chi-squared random variable with N - k - 1 degrees of freedom. Simi-
 larly, under the null hypothesis, the ANCOVA expression [SSE(R) -
 SSE (F)], when divided by the same o2, is distributed as a chi-squared random
 variable with k - 1 degrees of freedom. However, the ANORES expression,
 [SSE(RW) - SSE(FW)], is systematically larger than that in ANCOVA, and
 so when divided by the same &2 cannot also have a chi-squared distribution
 with k - 1 degrees of freedom: Its expected value, for example, will be greater
 than k - 1. Hence, ANORES using bw to obtain residual scores will lead to
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 an inflated a-level, and is certainly not equivalent to ANCOVA.
 Although the use of bw to obtain residuals does not reproduce ANCOVA,

 it is also possible to perform ANORES using bT to obtain residuals. Perhaps
 it is this form of ANORES that certain authors have had in mind when they
 have written of the equivalence between ANCOVA and ANORES. It should
 be noted that this approach is often referred to as a residual gain analysis (e.g.,
 Corder-Bolz, 1978). With this method of forming residual scores, the de-

 pendent variable for the ith subject in the jth group is Yi - bTXij. The full and
 restricted models to be compared, which we will denote FT and RT, re-
 spectively, are then:

 FT: Yij- bTrXj = + + U + Ej (13)

 RT: "Yi - bT Xj = + E . (14)

 Once again, we might perform a significance test by comparing the error sum
 of squares for the two models as

 F - [SSE(RT) - SSE(FT)]/(k - 1)
 SSE(FT)/(N - k - 1)

 As before, N - k - 1 appears in the denominator because 3 has been esti-
 mated to obtain the residual scores. Now, models F, R, FT, and RT must be
 compared. Models R and RT are identical because both include bT as the slope
 value and . = Y - bTX in both cases. Hence,

 SSE(RT) = SSE(R). (16)

 Consider next the relationship between models F and FT. In model F, esti-

 mates for R, aj and 3 are chosen so as to minimize the sum of squared errors,
 by the definition of least squares. In model FT, least squares estimates are

 obtained for Ri and oaj subject to the constraint that 3 = bT. However, bw is the
 least squares estimate and therefore must lead to a minimal sum of squared
 errors. Hence,

 SSE (FT) ? SSE (F). (17)

 Again, the extent of the difference in error sum of squares is related to the
 difference between bw and b,. In particular,

 SSE(FT) = SSE (F) + (bw - bT)2Z (X, - I )2. (18)

 Referring to Equations 3 and 15 shows that the "F value" obtained by using
 this approach to ANORES must result in a value that is less than or equal to
 the F obtained with ANCOVA, with equality holding only if bw = bT. Thus,
 this form of ANORES also fails to be equivalent to ANCOVA and fails to
 provide a valid F test, for much the same reason as did ANORES with bw .
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 Under the ANCOVA null hypothesis and assumptions, the ANCOVA F will
 be distributed as a central F with k - 1 and N - k - 1 degrees of freedom. A
 random variable such as that yielded by Equation 15, which has systematically
 smaller values, cannot also be said then to have a central F distribution with

 k - 1 and N - k - 1 degrees of freedom.
 Thus, claims that ANORES and ANCOVA are equivalent are false, which-

 ever approach to ANORES is employed. The fact that models F and FW are
 equivalent and that models R and RT are also equivalent suggests that it is
 possible to duplicate the ANCOVA test by examining residual scores. Specif-
 ically, the following test is equivalent to the ANCOVA test:

 F [SSE(RT) - SSE(FW)I/(k - 1)(19)
 SSE(FW)/(N - k - 1)

 The crucial fact is that ANCOVA depends on both bw and bT and conse-
 quently so must an equivalent analysis of residuals. It is insufficient to attend
 to only one regression coefficient. As stated previously, we believe that this is

 one of the points concerning ANCOVA that students most frequently mis-
 understand. Only by careful specification of the models and the least squares
 principle does the logic underlying the varying estimates of the regression
 coefficient parameter become clear.

 Graphs

 The difference between the approaches can be communicated quite easily
 and effectively using graphs. The three approaches we have discussed are
 represented schematically in Figure 1. To simplify comparisons across meth-
 ods, all plots are in terms of the original X and Y variables. (To do this, the

 bwXij term in models RW and FW, and the bTXij term in models RT and FT
 are effectively shifted from the left hand side to the right hand side of the
 prediction equations (see panels (b) and (c), respectively). The regression
 lines, however, accurately represent the model comparisons we have consid-
 ered. Thus, the deviation of any individual data point from the line equals the
 error score for that individual in the model represented by the regression line.

 The ANCOVA analysis is represented in panel (a). Clearly, for these data the
 full model's within-group regression lines are considerably less steep than the
 slope for the single regression line corresponding to the restricted model. But
 each slope is optimal for its model in a least squares sense-the full model's
 lines fit the data "better" than any other two parallel lines could, and the
 restricted model's line fits the data for the entire sample "better" than any
 other single line could.

 The situation in panel (b) is quite different. This represents an analysis of

 variance of the residuals that would be computed using bw as the single
 regression coefficient. The full model's fit to the data is the same as that in
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 panel (a), and hence the denominators of the F tests corresponding to panels
 (a) and (b) would be identical. However, the fit of the restricted model is now
 much worse. Constraining it to adopt the slope appropriate for the full model
 means its predictions will scarcely overlap with the data in either group. Thus
 the difference in goodness of fit between the models is greatly exaggerated,
 and the evidence for a treatment effect would thereby be made to appear
 much stronger than it really is.

 ANCOVA

 Y Restricted

 Group 2 Full

 Full

 Group I

 x

 A.

 ANORES with bT

 Y Full Restricted

 Group 2

 Full

 Group I

 x

 C.

 ANORES with bw

 Y

 Group 2

 Restricted

 Full

 Group I

 x

 B.

 FIGURE 1. Schematic repre-
 sentations of the three model

 comparisons discussed in the
 text, for hypothetical data in a
 two-group study.
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 Panel (c) illustrates how much smaller the treatment effect would seem to
 be if ANORES with bT were used. When the steep slope appropriate for the
 restricted model's single regression line is used in the full model, the parallel
 lines of the full model are much closer together. In addition, since the inflated

 lack of fit of this full model would be used as the yardstick for assessing the
 magnitude of the treatment effect, it will appear even smaller. Although the
 impact of using the wrong slope for a model is perhaps not as striking as it was

 for the restricted model in panel (b), the full model in panel (c) fits the data
 considerably less well than the correct parallel lines shown in panel (a).

 Numerical Example

 A numerical example will demonstrate the theoretical arguments concern-
 ing the relationship between ANCOVA and ANORES. Consider the hypo-
 thetical data given in Table I. The error sum of squares for the six models
 previously outlined are presented in Table II for these data, and Table III
 presents analysis of variance tables for ANCOVA and the two forms of
 ANORES. Results here verify that the "F" obtained with ANORES using bw
 to form residuals is too large and in fact would be declared significant at
 o -= .05. The "F" obtained when bT is used, on the other hand, is too small.
 This example illustrates that even when the two groups being compared have

 TABLE I

 Hypothetical Data to Illustrate ANCOVA-ANORES Relationship

 Group 1 Group 2

 X Y X Y

 100 100 100 105
 95 98 90 109
 105 102 95 104

 110 106 105 112
 105 101 95 100
 90 103 100 104

 TABLE II

 ANCOVA and ANORES Models and Associated Error Sums of Squares

 Model SSE

 I. Yj = + aj + pXi + E 110.3
 II. Yj = PL + P+X, + Eq 170.7
 III. Yi - bwX, = ? + tj + ij 110.3
 IV. Yj - bwXi = pI + Elj 175.7
 V. YJi- bTXj = + L j + El 114.9
 VI. Y - brX, = II + el 170.7
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 TABLE III

 Analysis of Variance Tables

 Source SS df MS F p

 ANCOVA Between 60.4 1 60.4 4.9 .054
 Within 110.3 9 12.3

 Total 170.7 10

 ANORES Between 65.3 1 65.3 5.3 .046

 with bwa Within 110.3 9b 12.3
 Total 175.7 10

 ANORES Between 55.8 1 55.8 4.4 .066

 with bTc Within 114.9 9b 12.8
 Total 170.7 10

 "a bw = 0.20 for these data

 b dfw = 9 because of the estimation of p in forming the residual

 Sbr = 0.09 for these data

 similar distributions on the covariate, the use of bw alone can lead to a
 conclusion of statistical significance when the correct ANCOVA test is in fact
 nonsignificant. With different data, the use of bT alone might result in a failure

 to recognize an appropriate significant result. For example, by simply revising

 the data from the first example by subtracting 4 from each X score in group
 2, the results of the analysis would be as shown in Table IV. Note that while
 the appropriate ANCOVA is now significant with p = .048, and the ANORES
 using bw is significant with p = .024, an ANORES using bT would not
 approach significance, p > .10. In fact, the F for ANORES - bT is less than
 half that for ANORES - bw.
 In addition, it is possible to duplicate the ANOVA results by employing

 both bT and bw to form residual scores and then applying Equation 19. The
 reason this procedure works can be seen in Tables III and IV. ANORES with
 bw yields the correct adjusted SSw, and ANORES with bT yields the correct
 adjusted SST. Thus, Equation 19 provides a ratio of the Adjusted Mean
 Square Between divided by the Adjusted Mean Square Within, as is desired.

 Discussion

 Some authors of experimental design texts (see, e.g., Kirk, 1982, p. 727)
 explain why bw should not be used to adjust both the numerator and the
 denominator of the F ratio by noting that this would violate the independence
 condition necessary for an F ratio. Although the numerator and the denomi-
 nator must indeed be independent, the current argument shows that this use
 of bw to obtain an adjusted sum of squares between groups also fails to provide
 even a numerator quantity that is distributed as a chi-square. Cochran (1957)
 has provided an alternative explanation of how dependence causes the use of
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 TABLE IV

 Analysis of Variance Tables for Revised Example

 Source SS df MS F p

 ANCOVA Between 64.3 1 64.3 5.2 .048

 Within 110.3 9 12.3

 Total 174.7 10

 ANORES Between 89.7 1 89.7 7.3 .024

 with bwa Within 110.3 9b 12.3
 Total 200.0 10

 ANORES Between 46.1 1 46.1 3.2 .106

 with bTc Within 128.5 9b 14.3
 Total 174.7 10

 "bw = 0.20 for these data
 b dfw = 9 because of the estimation of p in forming the residual
 "cb = -0.01 for these data

 bw to provide an inappropriate numerator term.
 In addition to explaining why the use of bw alone results in an inflated and

 inappropriately distributed between-group sum of squares, the current ap-
 proach also makes clear the different roles of bw and bT. This distinction
 between bw and bT has been presented in ways that are clearly misleading to
 students. Cohen and Cohen (1983), for example, err as we have shown by
 recommending use of bw alone, saying that to use bT would result in "removing

 from Y, in part, exactly what we mean to study" (p. 318). Although use of bT
 does result in a lower adjusted SSB than if bw alone were used, use of bT in the

 restricted model should not be viewed as removing part of "what we mean to
 study." Rather, it gives the restricted model a fair chance in that it allows the

 estimate of the regression parameter to be an optimal, least squares estimate,
 as bw is in the full model.

 In sum, although the concept of a residual score can be a useful pedagogical
 tool for explaining the logic of ANCOVA, it has typically not been utilized
 accurately. A correct SSB can be calculated by using residuals, but only by
 considering both bT and bw, and hence at least implicitly considering two sets
 of residuals. In terms of the residual score models,

 Adjusted SSB= SSE(RT) - SSE(FW). (20)

 Further, approaches that present ANORES as an alternate data analysis
 strategy that could be used in situations where ANCOVA is legitimate are
 shown to be wrong, because under the ANCOVA assumptions the test statistic
 in ANORES does not follow an F distribution. Instead of relying on
 ANORES to explain ANCOVA, an approach utilizing model comparisons
 and least squares clarifies the ANCOVA procedure and its underlying
 rationale.
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