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Abstract 

This paper identifies several serious problems with the widespread use of ANOVAs for the 

analysis of categorical outcome variables such as forced-choice variables, question-answer 

accuracy, choice in production (e.g. in syntactic priming research), et cetera. I show that even 

after applying the arcsine-square-root transformation to proportional data, ANOVA can yield 

spurious results. I discuss conceptual issues underlying these problems and alternatives provided 

by modern statistics. Specifically, I introduce ordinary logit models (i.e. logistic regression), 

which are well-suited to analyze categorical data and offer many advantages over ANOVA. 

Unfortunately, ordinary logit models do not include random effect modeling. To address this 

issue, I describe mixed logit models (Generalized Linear Mixed Models for binomially 

distributed outcomes, Breslow & Clayton, 1993), which combine the advantages of ordinary 

logit models with the ability to account for random subject and item effects in one step of 

analysis. Throughout the paper, I use a psycholinguistic data set to compare the different 

statistical methods.  
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Categorical Data Analysis: Away from ANOVAs (transformation 

or not) and towards Logit Mixed Models 

 

In the psychological sciences, training in the statistical analysis of continuous outcomes (i.e. 

responses or independent variables) is a fundamental part of our education. The same cannot be 

said about categorical data analysis (Agresti, 2002; henceforth CDA), the analysis of outcomes 

that are either inherently categorical (e.g. the response to a yes/no question) or measured in a way 

that results in categorical grouping (e.g. grouping neurons into different bins based on their firing 

rates). CDA is common in all behavioral sciences. For example, much research on language 

production has investigated influences on speakers’ choice between two or more possible 

structures (see e.g. research on syntactic persistence, Bock, 1986; Pickering and Branigan, 1998; 

among many others; or in research on speech errors). For language comprehension, examples of 

research on categorical outcomes include eye-tracking experiments (first fixations), picture 

identification tasks to test semantic understanding, and, of course, comprehension questions. 

More generally, any kind of forced-choice task, such as multiple-choice questions, and any count 

data constitute categorical data. 

 

Despite this preponderance of categorical data, the use of statistical analyses that have long been 

known to be questionable for CDA (such as analysis of variance, ANOVA) is still commonplace 

in our field. While there are powerful modern methods designed for CDA (e.g. ordinary and 

mixed logit models; see below), they are considered too complicated or simply unnecessary.  

There is a widely-held belief that categorical outcomes can safely be analyzed using ANOVA, if 

the arcsine-square-root transformation (Cochran, 1940; Rao, 1960; Winer et al., 1971) is applied. 
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This belief is misleading: even ANOVAs over arcsine-square-root transformed proportions of 

categorical outcomes (see below) can lead to spurious null results and spurious significances. 

These spurious results go beyond the normal chance of Type I and Type II errors. The arcsine-

square-root and other transformations (e.g. by using the empirical logit transformation, Haldane, 

1955; Cox, 1970) are simply approximations that were primarily intended to reduce costly 

computation time. In an age of cheap computing at everyone’s fingertips, we can abandon 

ANOVA for CDA. Modern statistics provide us with alternatives that are in many ways superior.  

 

This paper provides an informal introduction to one such method: generalized linear mixed 

models with a logit link function, henceforth mixed logit models (Bates & DebRoy, 2004; Bates 

& Sarkar, 2007; Breslow & Clayton, 1993; see also conditional logistic regression, Dixon, this 

issue; for an overview of other methods, see Agresti, 2002). Mixed logit models are a 

generalization of logistic regression. Like ordinary logistic regression (Cox, 1958, 1970; Dyke & 

Patterson, 1952; henceforth ordinary logit models), they are well-suited for the analysis of 

categorical outcomes. Going beyond ordinary logit models, however, mixed logit models include 

random effects, such as subject and item effects. I introduce both ordinary and mixed logit 

models and compare them to ANOVA over untransformed and arcsine-square-root transformed 

proportions using data from a psycholinguistics study (Arnon, 2006, submitted). All analyses 

were performed using the statistics software package R (R Development Core Team, 2006). The 

R code is available from the author.  
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The inadequacy of ANOVA over categorical outcomes 

Issues with ANOVAs and, more generally, linear models over categorical data have been known 

for a long time (e.g. Cochran, 1940; Rao, 1960; Winer et al., 1971; for summaries, see Agresti, 

2002: 120; Hogg & Craig, 1995). I discuss problems with the interpretability of ANOVAs over 

categorical data and then show that these problems stem from conceptual issues. 

 

Interpretability of ANOVA over categorical outcomes 

ANOVA compares the means of different experimental conditions and determines whether to 

reject the hypothesis that the conditions have the same population means given the observed 

sample variances within and between the conditions. For continuous outcomes, the means, 

variances, and the confidence intervals have straightforward interpretations. But what happens if 

the outcome is categorical? For example, we may be interested in whether subjects answer a 

question correctly depending on the experimental condition. So, we may observe that of the 10 

elicited answers, 8 are correct and 2 are incorrect. What is the mean and variance of 8 correct 

answers and 2 incorrect answers? We can code one of the outcomes, e.g. correct answers, as 1 

and the other outcome, e.g. wrong answers, as 0. In that case, we can calculate a mean (here 0.8) 

and variance (here 0.18). The mean is apparently straightforwardly interpreted as the mean 

proportion of correct answers (or percentages of correct answers if multiplied by 100).  

 

The current standard for CDA in psychology follows the aforementioned logic. Categorical 

outcomes are analyzed using subject and item ANOVAs (F1 and F2) over proportions or 

percentages. The approach is seemingly intuitive and, by now, so widespread that it is hard to 

imagine that there is any problem with it. Unfortunately, that is not the case. ANOVAs over 
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proportions can lead to hard-to-interpret results because confidence intervals can extend beyond 

the interpretable values between 0 and 1. For the above example, a 95% confidence interval 

would range from 0.52 to 1.08 (= 0.8 +/- 0.275), rendering an interpretation of the outcome 

variable as a proportion of correct answers impossible (proportions above 1 are not defined). One 

way to think about the problem of interpretability is that ANOVAs attribute probability mass to 

events that can never occur, thereby likely underestimating the probability mass over events that 

actually can occur. This intuition points at the most crucial problem with ANOVAs over 

proportions of categorical outcomes. ANOVA over proportions easily leads to spurious results.  

Categorical outcomes violate ANOVA’s assumption 

The inappropriateness of ANOVAs over categorical data can be derived on theoretical grounds. 

Assume a binary outcome (e.g. correct or incorrect answers to yes/no-questions) that is 

binomially distributed; that is, for every trial there is a probability p that the answer will be 

correct. Then the probability of k correct answers in n trials is given by the following function: 
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The population mean and variance of a binomially distributed variable X are given in  (2) and  (3).  

(2) [ ] npppnX =−+= )1(01μ  

(3) [ ] )1()1()0()1( 222 pnpppppnX −=−−+−=σ  

The expected sample proportion P over n trials is given by dividing μX by the number of trials n, 

and hence is p. Similarly, the variance of the sample proportion is a function of p: 
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From  (4) it follows that the variance of the sample proportions will be highest for p= 0.5 (the 

product of n numbers x that add up to 1 is highest if x1 = … = xn) and will decrease 

symmetrically as we approach 0 or 1. This is illustrated in Figure 1. Note that the shape of the 

curve and the location of its maximum are determined by p alone.  

[insert Figure 1 here] 

Now assume that we have two samples elicited under different conditions. In one condition, the 

probability that a trial will yield a correct answer is p1, in the other condition it is p2. For 

example, if p1 = 0.45 and p2 = 0.8, then: 
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In other words, if the probability of an outcome differs between two binomially distributed 

conditions, the variances will only be identical if p1 and p2 are equally far away from 0.5 (e.g. p1 

= 0.4 and p2 = 0.6). The bigger the difference in distance from 0.5 between the two conditions, 

the less similar the variances will be. Also, as can be see in Figure 1, the differences close to 0.5 

will matter less than differences closer to 0 or 1. Even if p1 and p2 are unequally distant from 0.5, 

as long as they are relatively close to 0.5, the variances of the sample proportions will be similar. 

Sample proportions between 0.3 and 0.7 are considered close enough to 0.5 to assume 

homogeneous variances (e.g. Agresti, 2002: 120). Within this interval, )1( pp − ranges from 0.21 

for p= 0.3 or 0.7 to 0.25 for p= 0.5. Unfortunately, we usually cannot determine a priori the 

range of sample proportions in our experiment (see also Dixon, this issue). Also, in general, 
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variances in two binomially distributed conditions will not be homogeneous – contrary to the 

assumption of ANOVA. 

 

The inappropriateness of ANOVA for CDA was recognized as early as Cochran (1940, referred 

to in Agresti, 2002: 596). Before I discuss the most commonly used method for CDA using 

ANOVA over transformed proportions, I introduce logistic regression, which is an alternative to 

ANOVA that was designed for the analysis of binomially distributed categorical data.  

 

An alternative: Ordinary logit models (logistic regression) 

Logistic regression, also called ordinary logit models, was first used by Dyke and Patterson 

(1952), but was most widely introduced by Cox (1958, 1970; see Agresti, 2002: Ch. 16). For 

extensive formal introductions to logistic regression, I refer to Agresti (2002: Ch 5), Chatterjee 

and colleagues (2000: Ch. 12), and Harrell (2001). For a concise formal introduction written for 

language researchers, I recommend Manning (2003: 5.7).  

 

Logit models can be seen to be a specific instance of a generalization of ANOVA. To see this 

link between logit models and ANOVA, it helps to know that ANOVA can be understood as 

linear regression (cf. Chatterjee, 2000: Ch. 5). Linear regression describes outcome y as a linear 

combination of the independent variables x1 … xn (also called predictors) plus some random 

error ε (and optionally an intercept β0). This is usually stated in one of three equivalent ways: 

(6) nnnn xxyxxy βββεβββ +++=⇔++++= LL 110110 )E(   

The first equation describes the value of y. The second and third equations describe the expected 

value of y. Note that categorical predictors have to be recoded into numerical values for  (6) to 
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make sense (treatment-coding, also called dummy-coding, being the most common coding). We 

can abbreviate  (6) using vector notation βx=)E(y (I use boldface for vectors), where x is a 

transposed vector consisting of 1 for the intercept, and all predictor values x1 … xn, and β is a 

vector of coefficients β0 … βn. A frequently used and even more compact notation describes an 

entire data set using matrix notation βXy =)E( (I use capital letters for matrices). Each row of 

the matrix X corresponds to the transposed vector x of a case in the data and y is the vector of 

outcomes. The coefficients β0 … βn have to be estimated. This is done in such a way that the 

resulting model fits the data ‘optimally’. Usually, the model is considered optimal if it is the 

model for which the actually observed data are most likely to be observed (the maximum 

likelihood model; for an informal introduction, see Baayen et al., this issue: Appendix A).  

 

Now imagine that we want to fit a linear regression to proportions of categorical outcomes. So, 

we could define the following model of expected proportions:  

(7) xβ=)E( p       or for the entire data set: Xβp =)E(  

Such a linear model, also called linear probability model (Agresti, 2002: 120), has many of the 

same problems mentioned above for ANOVAs over proportions. But, what if we transformed 

proportions into a space that is not bounded by 0 and 1 and that captures the intuition that 

changes around 0.5 weigh less than changes close to 0 or 1? Odds are such a space. They are 

easily derived from probabilities (and vice versa): 
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Thus, odds increase with increasing probabilities, with odds of 1 corresponding to a proportion 

of 0.5. Differences in odds are usually described multiplicatively (i.e. in terms of x-fold increases 

or decreases). For example, the odds of being on a plane with a drunken pilot are reported to be 

“1 to 117” (http://www.funny2.com/). In the notation used here, this corresponds to odds of 1 / 

117 ≈ 0.0086. Unfortunately, these odds are 860 times higher than the odds of dating a 

supermodel (≈ 0.00001).  Thus, we can describe the odds of an outcome as a product of 

coefficients raised to the respective predictor values (assuming treatment-coding, predictor 

values are either 0 or 1): 
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By simply taking the natural logarithm of odds instead of plain odds, we can turn the model back 

into a linear combination, which has many desirable properties: 
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The natural logarithm of odds is called the logit (or log-odds). The logit is centered around 0 

(i.e. )1logit()logit( pp −−= ), corresponding to a probability of 0.5, and ranges from negative to 

positive infinity. The ln β0 … ln βn in  (10) are constants, so we can substitute β0 … βn for them 

(or any other arbitrary variable name). This yields  (11): 
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In other words, we can think of ordinary logit models as linear regression in logit space! The 

logit function defines a transformation that maps points in probability space into points in log-
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odds space. In probability space, the linear relationship that we see in logit space is gone. This is 

apparent in  (12), describing the same model as in  (11), but transformed into probability space: 

(12) [ ] xβxβ
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ee
ep
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1
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Logit models capture the fact that differences in probabilities around p= 0.5 matter less than the 

same changes close to 0 or 1. This is illustrated in Figure 2, where the left panel shows a 

hypothetical linear effect of a predictor x in logit space ( xy 2.03+−= ), and the right panel 

shows the same effect in probability space. As can be seen in the right panel, small changes on 

the x-axis around p= 0.5 (i.e. x= 15 since )5.0logit(15*2.030 =+−= ) lead to large decreases or 

increases in probabilities compared to the same change on the x-axis closer to 0 or 1.  

[insert Figure 2 here] 

Thus logit models, unlike ANOVA, are well-suited for the analysis of binomially distributed 

categorical outcomes (i.e. any event that occurs with the same probability at each trial). Logit 

models have additional advantages over ANOVA. Logit models scale to categorical dependent 

variables with more than two outcomes (in which case we call the model a multinomial model; 

for an introduction, see Agresti, 2002). Among other things, this can help avoid confounds due to 

data exclusion. For example, in priming studies where researchers are interested in speakers’ 

choice between two structures, subject sometimes produce neither of those two. If non-randomly 

distributed, such “errors” can confound the analysis because what appears to be an effect on the 

choice between two outcomes may, in reality, be an effect on the chance of an error. Consider a 

scenario in which, for condition X, participants produce 50% outcome 1, 45% outcome 2, and 

5% errors, but, for condition Y, they produce 50% outcome 1, 30% outcome 2, and 20% errors. 

If an analysis was conducted after errors are excluded, we may conclude, given small enough 
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standard errors, that there is a main effect of condition (in condition X, the proportion of 

outcome 1 would be 50/95 = 0.53; in condition Y, 50/80 = 0.63). This conclusion would be 

misleading, since what really happens is that there is an effect on the probability of an error. We 

would find a spurious main effect on outcome 1 vs. 2. The problem is not only limited to errors. 

It also includes any case in which “other” categories are excluded from the analysis (e.g. when 

speakers in a production experiment produce structures that we are not interested in). 

Multinomial models make such exclusion unnecessary and allow us to test which of all possible 

outcomes a given predictor affects. For the above example, we could test whether the condition 

affects the probability of outcome 1 or outcome 2, or the probability of an error. 

 

Logit models also inherit a variety of advantages from regression analyses. They provide 

researchers with more information on the directionality and size of an effect than the standard 

ANOVA output (this will become apparent below). They can deal with imbalanced data, thereby 

freeing researchers from all too restrictive designs that affect the naturalness of the object of their 

study (see Jaeger, 2006 for more details). Like other regressions, ordinary logit models also force 

us to be explicit in the specification of assumed model structure. At the same time, regression 

models make it easier to add and remove additional post-hoc control in the analysis, thereby 

giving researchers more flexibility and better post-hoc control. Another nice feature that logit 

models inherit from regressions is that they can include continuous predictors. Modern 

implementations of logit models come with a variety of tools to investigate linearity assumptions 

for continuous predictors (e.g. rcs for restricted cubic splines in R’s Design library; Harrell, 

2005). Ordinary logit models do, however, have a major drawback compared to ANOVA: they 

do not model random subject and item effects. Later I describe how mixed logit models 
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overcome this problem. First I present a case study that exemplifies the problems of ANOVA 

over proportions using a real psycholinguistic data set. The case study illustrates that these 

problems persist even if arcsine-square-root transformed proportions are used in the ANOVA. 

 

A case study: Spurious significance in ANOVA over proportions 

Arnon (2006, submitted) conducts several experiments to test whether locality affects children’s 

production and comprehension of relative clauses in the same way as it has been shown to affect 

adults’ performance (e.g. Gibson, 1998). I consider only parts of the comprehension results of 

Arnon’s Study 2. In this 2 x 2 experiment, twenty-four Hebrew-speaking children listened to 

Hebrew relative clauses (RCs). RCs were either subject or object extracted. The noun phrase in 

the RC (the object for subject extracted RCs and the subject for object extracted RCs) was either 

a first person pronoun or a lexical noun phrase (NP). An example item in all four conditions is 

given in Table 1 (taken from Arnon, 2006), where the manipulated NP is underlined. 

[insert Table 1 approximately here] 

Arnon hypothesized that children, just like adults (Warren & Gibson, 2003), should (a) have a 

harder time understanding object RCs than subject RCs, and (b) perform worse on the RCs with 

full lexical NPs than on RCs with pronoun NPs. The comprehension data Arnon collected 

support her hypothesis (Arnon’s conclusions are based on the results of a mixed logit model). 

Table 2 summarizes the mean question-answer accuracy (i.e. the proportion of correct answers) 

and standard errors across the four conditions. 

[insert Table 2 approximately here] 

Note that, contrary to the assumption of the homogeneity of variances, but as expected for 

binomially distributed outcomes, the standard errors (and hence the variances) are bigger the 
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closer the mean proportion of correct answers is to 50%. The results in Table 2 also suggest that 

an ANOVA will find main effects of RC type and NP type as well as an interaction. Question-

answer accuracy is higher for subject RCs than for object RCs (92.7% vs. 76.6%) and higher for 

pronoun NPs than for lexical NPs (90.0% vs. 79.3%). Furthermore, the effect of NP type on the 

percentage of correct answers seems to be bigger for object RCs (68.9% vs. 84.3%) than for 

subject RCs (89.7% vs. 95.7%), suggesting that an ANOVA will find an interaction.  

ANOVA over untransformed proportions 

Indeed, subject and item ANOVAs over the average percentages of correct answers return 

significance for both main effects and the interaction.  

[insert Table 3 approximately here] 

As expected the interaction comes out as highly significant in the ANOVA. Now, are these 

effects spurious or not? In the previous section, I discussed several theoretical issues with 

ANOVAs over proportions. But do those issues affect the validity of these ANOVA results? As I 

show next, the answer is yes, they do.  

Ordinary logit model 

Ordinary logit models are implemented in most modern statistics program. I use the function lrm 

in R’s Design library (Harrell, 2005). The model formula for the R function lrm is given in  (13).  

(13) Correct~ 1 + RCtype + NPtype + RCtype:NPtype  

The “1” specifies that an intercept should be included in the model (the default). Further 

shortening the formula, I could have written Correct ~ RCtype*NPtype, which in R implies 

inclusion of all combinations of the terms connected by “*” (I will use this notation below).  
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For the ordinary logit model, the analyzed outcomes are the correct or incorrect answers. Thus, 

all cases are entered into the regression (instead of averaging across subjects or items). 

Significance of predictors in the fitted model is tested with likelihood ratio tests (Agresti, 2002: 

12). Likelihood ratio tests compare the data likelihood of a subset model with the data likelihood 

of a superset model that contains all of the subset model’s predictors and some more. A model’s 

data likelihood is a measure of its quality or fit, describing the likelihood of the sample given the 

model. The -2 * logarithm of the ratio between the likelihoods of the models is asymptotically 

χ2-distributed with the difference in degrees of freedoms between the two models. Thus a 

predictor’s significance in a model is tested by comparing that model against a model without the 

predictor using a χ2-test.  

 

Here I use the function anova.Design from R’s Design library (Harrell, 2005). The function 

automatically compares a model against all its subset models that are derived by removing 

exactly one predictor. For Arnon’s data, we find that a model without RC type has considerably 

lower data likelihood (χ2(1)= 28.8, p< 0.001), as does a model without NP type (χ2(1)= 12.2, p< 

0.001). Thus RC and NP type contribute significant information to the model. The interaction, 

however, does not (χ2(1)= 0.01, p> 0.9). The summary of the full model in Table 4 confirms this.  

[insert Table 4 approximately here] 

Note that the standard summary of a regression model provides information about the size and 

directionality of effects (an ANOVA would require planned contrasts for this information). The 

first column of Table 4 lists all the predictors entered into the regression. The second column 

gives the estimate of the coefficient associated with the effect. The coefficients have an intuitive 
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geometrical interpretation: they describe the slope associated with an effect in log-odds (or logit) 

space. For categorical predictors, the precise interpretation depends on what numerical coding is 

used. Treatment-coding compares each level of a categorical predictor against all other levels. 

This contrasts with effect-coding, which compares two levels against each other. Here I have 

used treatment-coding, because it is the most common coding scheme in the regression literature. 

For example, for the current data set, subject RCs are coded as 1 and compared against object 

RCs (which are taken as the baseline and coded as 0). So, the coefficient associated with RC type 

tells us that the log-odds of a correct answer for subject RCs are 1.35 log-odds higher than for 

object RCs. But what does this mean? Recall that log-odds are simply the log of odds. So, the 

odds of a correct answer for subject RCs are 9.335.1 ≈e  times higher than the odds for object 

RCs. Following the same logic, the odds for RCs with pronouns are estimated to be 4.289.0 ≈e  

times higher than the odds for RCs with lexical NPs.  

 

The third column in Table 4 gives the estimate of the coefficients’ standard errors. The standard 

errors are used to calculate Wald’s z-score (henceforth Wald’s Z, Wald, 1943) in the fourth 

column by dividing the coefficient estimate by the estimate for its standard error. The absolute 

value of Wald’s Z describes how distant the coefficient estimate is from zero in terms of its 

standard error. The test returns significance if this standardized distance from zero is large 

enough. Coefficients that are significantly smaller than zero decrease the log-odds (and hence 

odds) of the outcome (here: a correct answer). Coefficients significantly larger than zero increase 

the log-odds of the outcome. Unlike the likelihood ratio test, however, Wald’s z-test is not robust 

in the presence of collinearity (Agresti, 2002: 12). Collinearity leads to inflated estimates of the 

standard errors and changes coefficient estimates (although in an unbiased way). The model 
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presented here contains only very limited collinearity because all predictors were centered (VIFs 

< 1.5).1 This makes it possible to use the coefficients to interpret the direction and size of the 

effects in the model. 

 

The main effects of RC type and NP type are highly significant. We can also interpret the 

significant intercept. It means that, if the RC type is not ‘subject RC’ and the NP type is not 

‘pronoun’, the chance of a correct answer in Arnon’s sample is significantly higher than 50%. 

The odds are estimated at 2.28.0 ≈e , which means that the chance of a correct answer for object 

RCs with a lexical NP is estimated as 69.0
2.21

2.2
≈

+
=p . Indeed, this is what we have seen in 

Table 2. Similarly the predicted probability of a correct answer for subject RC with a pronoun is 

calculated by adding all relevant log-odds, 04.389.035.18.0 =++ , which gives 

95.0
1 04.3

04.3

≈
+

=
e

ep (compared to 95.7% given in Table 2). 

 

The numbers do not quite match because we did not include the coefficient for the interaction. 

However, notice that they almost match. This is the case because the interaction does not add 

significant information to the model (Wald’s Z=0.01, P > 0.9). The effects are illustrated in 

Figure 3, showing the predicted means and confidence intervals for all combinations of RC and 

NP type (the plot uses plot.Design from R’s Design library, Harrell, 2005): 

[insert Figure 3 approximately here] 

In sum, there is no significant interaction because the effect of NP type for different levels of RC 

type does not differ in odds (and hence neither does it differ in log-odds). Indeed, both the 

change from 68.9% to 84.3% associated with NP type for object RCs and the change from 89.7% 
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to 95.7% associated with NP type for subject RCs correspond to an approximate 2.5-fold odds 

increase. So, unlike ANOVA, logistic regression returns a result that respects the nature of the 

outcome variable.  

 

The spurious results of the ANOVA should be of no further surprise given the before-mentioned 

conceptual problems. At this point, readers familiar with transformations for proportional data 

may find the argument against ANOVA spurious because they believe that ANOVAs will return 

correct results once the data is adequately transformed. In the next section I describe why this 

assumption is wrong for at least the most commonly used transformation. 

 

The arcsine-square-root transformation and its failure 

There are several problems with the reliance on transformation for ANOVA over proportional 

data. To begin with, it is unclear how strictly journals enforce the use of transformations – few 

psycholinguistic papers with categorical dependent variables mention transformation. There is 

also reason to doubt that transformations are always applied correctly. For example, the most 

popular transformation, the so called arcsine transformation, or more accurately arcsine-square-

root transformation ( ( )xxt arcsin)( = ; e.g. Rao, 1960; Winer et al., 1971) requires further 

modifications for small numbers of observations or proportions close to 0 or 1 (0 or 100% for 

percentages, respectively; e.g. Hogg & Craig, 1995). Bartlett (1937: 168, footnote) proposes that 

proportions of 0 should be converted to 1/4n before applying the transformation and proportions 

of 1 should be converted to (n-1/4)/n. In praxis these modifications are rarely applied (Victor 

Ferreira, p.c.), despite the fact that sample proportions close to 0 or 1 are common in behavioral 

research (e.g. in research on speech errors or when analyzing comprehension accuracies). Even 
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more worrisome is the lack of a theoretical justification for the arcsine-square-root 

transformation (cf. Cochran, 1940: 346). Most importantly, however, even ANOVA over 

transformed proportions can lead to spurious results. I illustrate this again using Arnon’s data. 

Spurious significance persists even after arcsine-square-root transformation 

I limit myself to the subject analysis, since this is where the insufficiency of the arcsine-square-

root transformation shows up most clearly. As can be seen in Table 5, the interaction is still 

incorrectly considered significant (p< 0.01). This is the case because several children in Arnon’s 

experiment performed close to ceiling (the proportions of correct answers are 1 or close to 1). 

ANOVAs over arcsine-square-root transformed data are unreliable for such data sets. 

[insert Table 5 approximately here] 

One reason why the arcsine-square-root transformation is unreliable for such data becomes 

apparent once we compare the plots of logit and arcsine-square-root transformed proportions. 

Figure 5 shows the two transformations plotted against probabilities. Figure 6 shows the slope 

(1st derivative) and curvature (2nd derivative) of the two transformations. Both transformations 

have a saddle point at p= 0.5, but for all p≠ 0.5 the slope of the logit is always higher than the 

slope of the arcsine-square-root. The absolute curvature (the change in the slope) is also larger. 

In other words, as one moves away from p= 0.5, a change in probability p1 to p2 corresponds to 

more of a change in log-odds than to a change in arcsine-square-root transformed probabilities. 

This means that, compared to the logit, the arcsine-square-root transformation underestimates 

changes in probability more the closer they are to 0 or 1. 

[insert Figure 5 and 6 approximately here] 
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Now consider the actual mean proportions for the four conditions in Arnon’s data and the 

corresponding logit and arcsine-square-root transformed values given in Table 6 (cf. Table 2). 

While it does not make sense to compare the absolute transformed values, we can compare the 

differences in the differences. In logit space the effect of NP type corresponds to an increase of 

0.88 for object RCs and 0.94 for subject RCs – a difference in the effects of 6.8%. This 

difference can be thought of as the interaction (it describes the super-additivity over the two 

main effects). Ignoring variance for now, we can say that the bigger this difference is, the more 

of a potential interaction effect there is. In arcsine-square-root space, the effect of NP type 

corresponds to an increase of 0.18 for object RCs and 0.12 for subject RCs – a difference of 

50%! At the end, significance of difference is determined by the amount of variance within and 

between the conditions, but what the above comparison shows is that the arcsine-square-root 

transformation does not attribute as much ‘weight’ to changes in proportions close to 1 as the 

logit transformation does. Intuitively, while the arcsine-square-root transformation makes 

proportional data more similar to what it would look like in logit space (the difference of the 

differences for proportions would be over 150%), it does not go quite far enough. 

[insert Table approximately here] 

In sum, for proportional data with proportions close to 0 or 1, even ANOVA over arcsine-square-

root transformed data can return spurious results, while logistic regression does not. As 

mentioned earlier, this problem is not limited to spurious significances. Imagine the effect of NP 

type would be identical in proportions for subject and object RCs (e.g. imagine Arnon’s data but 

with 74.9% correct answers for object RCs with pronouns): in proportions there would seem to 

be no interaction, but we may find one in logit space (granted sufficiently small standard errors).  
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At this point, one may ask whether there are any better transformations that would allow us to 

continue to use ANOVA for CDA. Several such transformations have been proposed, the most 

well-known being the empirical logit (first proposed by Haldane, 1955, but often attributed to 

Cox, 1970). The idea behind such transformations is to stay as close as possible to the actual 

logit transformation while being defined for 0 and 1 (for an empirical comparison of different 

logit estimates, see Gart and Zweifel, 1967). Indeed, appropriate transformations combined with 

appropriate weighing of cases mostly avoid the problems of ANOVA described above (for 

weighted linear regression that deals with heterogeneous variances, see McCullagh and Nelder, 

1989). However, it is important to note that even these transformations are still ad-hoc in nature 

(which transformation works best depends on the actual sample the researcher is investigating, 

Gart & Zweifel, 1967). Transformations for categorical data were originally developed because 

they provided a computationally cheap approximation of the more adequate logistic regression –

approximations that are no longer necessary.  

 

This leaves one potential argument for the use of ANOVA (with transformations) for CDA: the 

fact that ordinary logit models provide no direct way to model random subject and item effects. 

The lack of random effect modeling is problematic as repeated measures on the subject or item in 

our sample constitute violations of the assumption that all observations in our data set are 

independent of one another. Data from the same subject or item is often referred to as a cluster. 

Analyses that ignore clusters produce invalid standard errors and therefore lead to unreliable 

results.  Next I show that mixed logit models address this problem (other methods include 

separate logistic regressions for each subject/item, see Lorch and Meyers, 1990, or bootstrap 

sampling with random cluster replacement, see Feng et al., 1996). 
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Mixed logit models 

Mixed logit models are a type of Generalized Linear Mixed Models (Breslow & Clayton, 1993; 

Lindstrom & Bates, 1990; for a formal introduction, see Agresti, 2002). Mixed Models with 

different link functions have been developed for a variety of underlying distributions. Mixed 

logit models are designed for binomially distributed outcomes.  

 

Linear mixed models (Pinheiro & Bates, 2000; for an introduction, see Baayen et al., this issue) 

describe an outcome as the linear combination of fixed effects (described by Xβ) and conditional 

random effects associated with e.g. subject and items (described by Zb) of  plus noise ε. The 

random effects are characterized by a multivariate normal distribution, the variances and 

covariances of which are described by Σ (for more detail, see Baayen et al., this issue). The 

random effects are assumed to be independent of the random noise ε. 

(14) εbΣbεεZbXβy ⊥++=    ),,0(~   ),,0(~    , 22 σσ NN I    

and, similarly for a mixed logit model:  

(15) εbΣbεεZbXβp ⊥++=    ),,0(~   ),,0(~    ,)logit( 22 σσ NN I  

Just as ordinary logit models are fit by finding the maximally likely coefficient estimates, mixed 

logit models are fitted to the data in such a way that the resulting model describes the data 

optimally. However, unlike for mixed linear models, there are no known analytic solutions for 

the exact optimization of mixed logit models’ data likelihood (Hausman & Harding, 2006:2; 

Bates, 2007: 29). Instead, simulation methods, such as Monte Carlo simulations, are used to find 

optimal fits. Another computationally more efficient method (especially for larger data sets) 
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maximizes analytic approximations of the likelihood function, so called quasi-log-likelihood (for 

the trade-offs of both approaches, see Agresti, 2002: 523-524). Here I use the lmer function from 

R’s lme4 library (Bates & Sakar, 2007), using Laplace approximation to maximize quasi-log-

likelihood (Bates, 2007: 29). Laplace approximation “performs extremely well, both in terms of 

numerical accuracy and computational time” (Hausman & Harding, 2006: 19). 

A case study using mixed logit models 

The model formula is specified in  (16), where the term in parentheses describes the random 

subject effects for the intercept, the effects of RC and NP type, and their interaction. Random 

effects are assumed to be normally distributed (in log-odds space) around a mean of zero. The 

only parameter the model fits for the random effects is their variance (see also Baayen et al., this 

issue; for details on the implementation, see Bates & Sakar, 2007). The random intercept 

captures potential differences in children’s base performance. The other random effects capture 

potential differences between children in terms of how they are affected by the manipulations.  

(16) Correct ~ 1 + RCtype * NPtype + (1 + RCtype * NPtype | child) 

The estimated fixed effects are summarized in Table 7. The number of observations and the 

quasi-log-likelihood of the model are given in the table’s caption. The estimated variances of the 

random effects are summarized in Table 8. 

[insert Table 7 and 8 approximately here] 

In sum, a mixed logit model analysis of the data from Arnon (submitted) confirms the results 

from the ordinary logit model presented above. Even after controlling for random subject effects, 

the interaction between RC type and NP type is not significant. Note that the total correlation 

between the random interaction and effect of NP type for subjects in Table 8 suggests that the 
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model has been overparameterized (cf. Baayen et al., this issue) – one of the two random effects 

is redundant. I get back to this shortly, when I show that we can further simplify the model. 

Additional advantages of mixed logit models 

Mixed logit models combine all the advantages of ordinary logit models with the ability to model 

random effects, but that’s not all. Mixed logit models do not make the frequently unjustified 

assumption of the homogeneity of variances. Also, the R implementation of mixed logit models 

used here (lmer) actually maximizes penalized quasi-log-likelihood (Bates, 2007: 29). 

Penalization adds a term punishing large coefficient values to the function that is being 

maximized by the fitting algorithm. This makes overfitting of the model to the sample less likely, 

thereby making it more likely that the model describes generalizations over the entire population 

(Agresti, 2002: 524). Guarding against overfitting is especially relevant for unbalanced data sets 

that result from data loss. Additionally, the specific method used for fitting here, Laplace 

approximation, is known to provide great numerically accuracy (Hausman & Harding, in press). 

Indeed, simulations show that lmer’s quasi-likelihood optimization outperforms ANOVA in 

terms of accurately estimating effect sizes and standard errors (Dixon, this issue). In other words, 

mixed logit models have greater power than ANOVA and therefore more likely to detect true 

effects. 

 

Another advantage of mixed models is that they allow us to test rather than to stipulate whether a 

hypothesized random effect should be included in the model. The question of whether or to what 

extent random subject and items effects (especially the latter) are actually necessary has been the 

target of an ongoing debate (Clark, 1974; Raaijmakers et al., 1999, a.o.). As Baayen et al. (this 
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issue) demonstrate, mixed models can be used to test a hypothesized random effect. The test 

follows the same logic that was used above to test fixed effects: we simply compare the 

likelihood of the model with and the model without the random effect. Before I illustrate this for 

the mixed logit model from Table 7 and 8, a word of caution is in order. Comparisons of models 

via quasi-log-likelihood can be problematic, since quasi-likelihood are approximations (see 

above). This problem is likely to become less of an issue as the employed approximations 

become better (for discussion, see Bates & Sakar, 2007). In any case, we can use quasi-log-

likelihood comparisons between models to get an idea of how much evidence there is for a 

hypothesized random effect. 

 

As mentioned above, the correlation between the random subject effects in Table 8 shows that 

some of the random effects are redundant. Indeed, model comparisons suggest that neither the 

random effect for the interaction nor the random effect for NP type is justified. The quasi-log-

likelihood decreases only minimally (from -256.8 to -258.5) when these two random effects are 

removed. A revised mixed logit model without random effects for NP type and the interaction is 

specified in  (17). Table 9 and Table 10 give the updated results.  

(17) Correct ~ 1 + RCtype * NPtype + (1 + RCtype | child) 

[insert Table 9 and 10 approximately here] 

 

Note that most fixed effect coefficients have not changed much – neither compared to the full 

mixed logit model in  (16), nor compared to the ordinary logit model in  (13). In all models the 

main effects are significant but the interaction is not. Only the coefficient of RC type differs 

between the current mixed logit model and the ordinary logit model: it is quite a bit larger in the 



 Categorical Data Analysis 24 

current model, but note that the standard error has also gone up. Wald’s Z for RC type does not 

differ much between the two models. In summary, if there are random subject effects associated 

with NP type or the interaction of RC and NP type (e.g. if children in the sample differ in terms 

of how they react to NP type), they would seem to be subtle.  

 

Finally, mixed logit models inherit yet another advantage from the fact that they are a type of 

generalized linear mixed model. They allow us to conduct one combined analysis for many 

independent random effects. For example, we could include random intercepts for both subjects 

and items in the model:  

(18) Correct ~ 1 + RCtype * NPtype + (1 + RCtype | child) + (1 | item) 

If a fixed effect is significant in such a model, this means it is significant after the variance 

associated with subject and items is simultaneously controlled for. In other words, mixed logit 

models can combine F1 and F2 analysis (for more detail and further examples for linear mixed 

models, see Baayen et al., this issue). Here only a random intercept (rather than random slopes 

for RC type, etc.) is included for items, because all further random effects are highly correlated 

with the random intercept (rs > 0.8) and hence unnecessary. The resulting model is summarized 

in Table 11 and Table 12. The minimal change in the quasi-log-likelihood, and the small 

estimates for the item variance, suggest that item differences do not account for much of the 

variance. Note that despite the fact that two items had missing cells and had to be excluded from 

the ANOVA, the current model uses all 8 items and 24 subjects in Arnon’s data.  

[insert Table 11 and 12 approximately here] 

Combining subject and item analyses into one unified model is efficient and conceptually 

desirable (cf. Clark, 1973). Note that, in principle, mixed models are even compatible with 
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random effects beyond subject and item effects (e.g. if the children spoke different dialects and 

we hypothesized that this matters, we could include a random effect for dialect).  

 

Conclusions 

I have summarized arguments against the use of ANOVA over proportions of categorical 

outcomes. Such an analysis – regardless of whether the proportional data is arcsine-square-root 

transformed – can lead to spurious results. With the advent of mixed logit models, the last 

remaining valid excuse for ANOVA over categorical data (the inability of ordinary logit models 

to model random effects) no longer applies. Mixed logit models combine the strengths of logistic 

regression with random effects, while inheriting a variety of advantages from regression models. 

Most crucially, mixed models avoid spurious effects and have more power (Dixon, this issue). 

Finally, they form part of the generalized linear mixed model framework that provides a 

common language for analysis of many different types of outcomes.  
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Appendices 

[Insert appendices here] 
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Footnotes 

 

1 Collinearity is more of a concern in unbalanced data sets, but even in balanced data sets it can 

cause problems (for example, interactions and their main effects are often collinear even in 

balanced data sets). R comes with several implemented measures of collinearity (e.g. the 

function kappa as a measure of a model’s collinearity; or the function vif in the Design library, 

which gives variance inflation factors – a measure of how much of one predictor is explained by 

the other predictors in the model). R also provides methods to remove collinearity from a model: 

from simple centering and standardizing (see the functions scale) to the use of residuals or 

principal component analysis (PCA, see the function princomp). 
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Table 1 

Materials from Study 2 in Arnon (2006; Comprehension experiment) 

Subject RC,  

Lexical NP 

Eize tzeva ha-naalaim shel ha-yalda she metzayeret et ha-axot? 

Which color the-shoes of the-girl that draws the nurse-ACC 

What color are the shoes of the girl that is drawing the nurse? 

Object RC, 

Lexical NP 

Eize tzeva ha-naalaim shel ha-yalda she ha-axot metzayeret? 

Which color the-shoes of the-girl that the nurse draws? 

What color are the shoes of the girl that the nurse is drawing? 

Subject RC, 

Pronoun 

Eize tzeva ha-naalaim shel ha-axot she metzayeret oti? 

Which color the-shoes of the-nurse that draws me-ACC? 

What color are the shoes of the nurse that is drawing me? 

Object RC, 

 Pronoun 

Eize tzeva ha-naalaim shel ha-axot she ani metzayeret? 

Which color the-shoes of the-nurse that I-NOM draw? 

What color are the shoes of the nurse that I am drawing? 

 

 

Table 2 

Percentage of correct answers and standard errors by condition 

 Lexical NP Pronoun NP 

Subject RC 89.7% (.02) 95.7% (.02) 

Object RC 68.9% (.04) 84.3% (.03) 
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Table 3 

Summary of the ANOVA results over untransformed data 

        Subject analysis     Item analysis   Combined 

        F1(1,23)        P         F2(1,5)        P   minF(1,10)        P 

RC type 24.2 <0.01 10.2 <0.03 7.2 <0.03 

NP type 16.1 <0.01 19.7 <0.01 8.9 <0.01 

Interaction 9.7 <0.01 12.6 <0.02 5.5 <0.04 

 

 

Table 4 

Summary of the ordinary logit model (N= 696; model Nagelkerke r2= 0.126) 

Predictor Coefficient       SE Wald Z        P 

Intercept 0.80 (0.167) 4.72 <0.001 

RC type=subject RC 1.35 (0.295) 4.58 <0.001 

NP type=pronoun 0.89 (0.272) 3.26 <0.001 

Interaction=subject RC & pronoun 0.05 (0.511) 0.10 >0.9 

 

Table 5 

Summary of the ANOVA results over arcsine-square-root transformed data 

    F1(1,23)        P 

RC type 28.5 <0.01 

NP type 17.3 <0.01 

Interaction 8.5 <0.01 
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Table 6 

Proportions and their logit and arcsine-square-root transforms for the four conditions in Arnon 

(2006: Study 2) 

 Object RC Subject RC 

 Lexical NP Pronoun NP Lexical NP Pronoun NP 

Proportions P 0.689 0.843 0.897 0.957

Logit(P) 0.80 1.68 2.16 3.10

Arcsine P  0.98 1.16 1.24 1.36

 

 

Table 7 

Summary of the fixed effects in the mixed logit model (N= 696; log-likelihood= -256.2) 

Predictor Coefficient       SE Wald Z        P 

Intercept 0.84 (0.203) 4.17 <0.001 

RC type=subject RC 1.82 (0.365) 4.97 <0.001 

NP type=pronoun 1.05 (0.288) 3.66 <0.001 

Interaction=subject RC & pronoun 0.59 (0.580) 1.02 >0.3 
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Table 8 

Summary of random subject effects and correlations in the mixed logit model 

     Correlation with random effect for 

Random subject effect         s2     Intercept       RC type        NP type 

Intercept 0.283  

RC type=subject RC 0.645 0.625  

NP type=pronoun 0.010 0.800 0.459  

Interaction=subject RC & pronoun 0.221 0.800 0.459 1.000 

 

Table 9 

Summary of the fixed effects in the mixed logit model (N= 696; log-likelihood= -256.8) 

Predictor Coefficient       SE Wald Z        P 

Intercept 0.86 (0.212) 3.99 <0.001 

RC type=subject RC 1.90 (0.380) 5.01 <0.001 

NP type=pronoun 0.96 (0.278) 3.44 <0.001 

Interaction=subject RC & pronoun 0.10 (0.544) 0.18 >0.8 

 

Table 10 

Summary of random subject effects and correlations in the mixed logit model 

      Correlation with random effect for 

Random subject effect         s2     Intercept       RC type        NP type

Intercept 0.399  

RC type=subject RC 0.744 0.629  
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Table 11 

Summary of the fixed effects in the mixed logit model (N= 696; log-likelihood= -256.0) 

Predictor Coefficient       SE Wald Z        P 

Intercept 0.85 (0.244) 3.49 <0.001 

RC type=subject RC 1.97 (0.385) 5.11 <0.001 

NP type=pronoun 0.99 (0.283) 3.49 <0.001 

Interaction=subject RC & pronoun 0.07 (0.550) 0.13 >0.8 

 

 

Table 12 

Summary of random subject and item effects and correlations in the mixed logit model 

     Correlation with random effect for 

Random effect         s2     Intercept       RC type        NP type 

Subject intercept 0.420  

Subject RC type=subject RC 0.770 0.620  

Item intercept 0.086  
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Figure captions 

Figure 1: Variance of sample proportion depending on p (for n= 1) 

 

Figure 2: Example effect of predictor x on categorical outcome y.  The left panel displays the 

effect in logit space with 
x

xp
2.03

)(1
1ln +−=

− . The right panel displays the same 

effect in probability space with xe
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Figure 3: Estimated effects of RC type and NP type on the log-odds of a correct answer. 

 

 

Figure 4: Proportions plotted against their logit transform (left panel) and arcsine-square-root 

transform (right panel) 

 

 

Figure 5: Slope and curvature of the logit and arcsine-square-root transformation 
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Figure 1 
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Figure 2  
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Figure 3 
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Figure 4 
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Figure 5 

 

 


