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Abstract
Background: Usually the researchers performing meta-analysis of continuous outcomes from
clinical trials need their mean value and the variance (or standard deviation) in order to pool data.
However, sometimes the published reports of clinical trials only report the median, range and the
size of the trial.

Methods: In this article we use simple and elementary inequalities and approximations in order to
estimate the mean and the variance for such trials. Our estimation is distribution-free, i.e., it makes
no assumption on the distribution of the underlying data.

Results: We found two simple formulas that estimate the mean using the values of the median (m),
low and high end of the range (a and b, respectively), and n (the sample size). Using simulations, we
show that median can be used to estimate mean when the sample size is larger than 25. For smaller
samples our new formula, devised in this paper, should be used. We also estimated the variance of
an unknown sample using the median, low and high end of the range, and the sample size. Our
estimate is performing as the best estimate in our simulations for very small samples (n ≤ 15). For
moderately sized samples (15 <n ≤ 70), our simulations show that the formula range/4 is the best
estimator for the standard deviation (variance). For large samples (n > 70), the formula range/6
gives the best estimator for the standard deviation (variance).

We also include an illustrative example of the potential value of our method using reports from the
Cochrane review on the role of erythropoietin in anemia due to malignancy.

Conclusion: Using these formulas, we hope to help meta-analysts use clinical trials in their analysis
even when not all of the information is available and/or reported.

Background
To perform meta-analysis of continuous data, the meta-
analysts need the mean value and the variance (or stand-
ard deviation) in order to pool data. However, sometimes,
the published reports of clinical trials only report the
median, range and the size of the trial. In this article we

use simple and elementary inequalities in order to esti-
mate the mean and the variance for such trials. Our esti-
mation is distribution-free, i.e., it makes no assumption
on the distribution of the underlying data. In fact, the
value of our approximation(s) is in giving a method for
estimating the mean and the variance exactly when there
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is no indication of the underlying distribution of the data.
In current practice, the median is often substituted for the
mean, and the Range/4 or Range/6 for the standard devi-
ation. However, it has not been shown that median can
indeed be used to replace mean values, nor when the
range-formulas are appropriate.

Methods
Assumptions
Suppose a clinical trial reports the following summary
measures for a certain event:

m = Median

a = The smallest value (minimum)

b = The largest value (maximum)

n = The size of the sample.

In this article, we want to estimate the mean, and the
standard deviation of this sample of size n. First we will
order this sample by size:

a = x1 ≤ x2 ≤ x3 ≤ … xM-1 ≤ xM = m ≤ xM+1 ≤ … ≤ xn-1 ≤ xn = b,

where the Mth number is the median, and  (for

the sake of simplicity, we will assume that n is an odd
number).

Results
Estimating the sample mean 
We begin with several simple inequalities:

Adding up and diving by n, the middle column is exactly

the sample mean, .

Adding up and diving by n for all three columns, we get
the following inequality:

After replacing  into the inequality above, we

get:

Therefore, the lower bound for the sample mean is

The upper bound for the sample mean is

The sample mean can than be estimated as

, or

When the size of the sample is fairly large, the second frac-
tion becomes negligible and the estimate can be written in
a simplified form:

We can use this simple expression even if we do not know
the size of the sample. The length of the interval which
contains the sample mean (the interval [LB, UB]), is
approximately
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Estimating the sample variance
Even when the only information we have about a set of
data is it's range: R = b - a, we can still estimate the stand-
ard deviation. If our data are normally distributed, then
P[-2σ <X - µ < 2σ] = 0.95, and therefore, the range covers

approximately 4σ, i.e., .

When the data we are dealing with are not normally dis-
tributed, we can still use the Chebyshev's inequality

[1,2] , and obtain the follow-

ing for k = 3: . There-

fore, the range covers approximately 6σ, i.e., .

On the other hand, if the summary results for a clinical
trial include the median and the size of the sample, we can
presumably do better than the two range approximations
above. Next section deals with that situation.

The Variance S2 – distribution free inequalities
Using the inequalities (1) and taking in consideration that
all the data are non-negative, we can multiply each row i
with the value xi (i = 1, 2, 3, ..., n). We obtain the following
inequalities:

Adding up by columns, we have the following:

Using the inequalities (1) again, we estimate the sums in
LB and UB as

Therefore, the expressions in (7) can be estimated as

The sum of squares can be therefore estimated as

The sample variance can be evaluated from the computa-
tional formula

We can estimate  using (10) and  using

(4). Therefore, after simplifying:

Note that if we let n grow without bound, the expression
(12) becomes the well-known range formula

.
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The Variance S2 – equidistantly spaced data
The formula (4) can also be obtained by dividing the
range [a, b] into two parts: [a, m), and [m, b]. We then sub-
divide each of these two parts into subintervals using
equally spaced partition points. In other words, we are
estimating each of the data points (except for a, m, and b)
with uniformly spaced approximate points:

and

Therefore our sample is approximately given as

a = x1 ≤ x2 ≤ x3 ≤ … ≤ xM-1 ≤ y1 = m ≤ y2 ≤ … ≤ yM-1 ≤ yM = b.

We can use this partition to estimate the sample variance

 (and standard

deviation, S). After a little algebra, the sample variance can
be estimated by

If we let the number of estimation points increase without
bounds, i.e., assume that n in the expression (15) is very
large, we obtain a simplified version of the expression
above:

Discussion
Analysis and performance of estimates
In order to verify the accuracy of these estimates, we ran
several simulations using the computer package Maple
where the data were variously distributed, and obtained
the tables below.

We drew samples from five different distributions, Nor-
mal, Log-normal, Beta, Exponential and Weibull. The size
of the sample ranged from 8 to about 100. In the first sub-
section we present the results of our estimation for a nor-
mal distribution, which is what meta-analysts would
commonly assume. We also show the results of simula-
tions where the data were selected from a skewed distribu-
tions. In each case we compared the relative error made by
estimating the sample mean with the approximation
given by formulas (4) and (5), as well as by the median,

and the relative error made by estimating the sample var-
iance by the formulas (12) and (16), as well as the well-
known standard deviation estimators Range/4 and Range/
6.

Normal distribution
We drew 200 random samples of sizes ranging from 8 to
100 from a Normal Distribution with a population mean
50 and standard deviation 17. Then we graphed the aver-
age relative error vs. the sample size. Both estimators for
the mean, formulas (4) and (5), are very close to the sam-
ple mean (within 4%). For sample sizes smaller than 29,
formula (5) is actually outperforming the median as a
mean estimator. For larger sample sizes, however, the
median is more consistent estimator for a normally dis-
tributed sample.

The variance estimators however show greater distinction.
For a very small sample size (up to 15) the formula (16)
is performing the best (within 10% of the real sample
standard deviation). When the sample size is between 16
and 70, the formula Range/4 is the best estimator of the
sample standard deviation, with a relative error between
10–15%. However, for larger sample sizes, the formula
Range/6 performs the best for this distribution. To com-
pare the precision of these estimates on average, we col-
lected the results of our simulation in the Additional file
1.

Simulation with a skewed distribution (Log-Normal, Beta, 
Exponential and Weibull)
We also decided to run a simulation where the algorithm
selects a sample from a skewed distribution. We decided
to use Log-Normal distribution with parameters µ = 4,
and σ = 0.3, Beta distribution with parameters a = 9 and b
= 4, Exponential distribution with the parameter λ = 10
and Weibull distribution a = 2 and b = 35. These parame-
ters were chosen arbitrarily, and the simulation results did
not differ when we used different parameters (naturally,
larger variance translates into larger relative error for mean
estimators for any distribution). Just like in the case of
Normal distribution, we ran our algorithm 200 times for
each sample size ranging from 8 to 100. For each of the
estimation formulas we then calculated the average rela-
tive error. We will summarize the best formula for estima-
tion in Table 1.

Therefore, counter intuitively, even for the skewed distri-
butions we tested, it seems like that for a larger sample
size (usually more than 25) simply replacing sample
mean with the reported median is the best estimate of the
sample mean. This is an interesting result and we are not
aware that it was previously demonstrated. It gives assur-
ance to meta-analysts that simple replacement of mean
with medians in meta-analysis is a viable option. Formula
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(5), even though taking more parameters into account
(the range and the sample size), on average only outper-
forms the median for small sample sizes. However, a large
number of trials used in meta-analyses do have very small
number of patients for each arm (as small as 10–15). For
these trials, formula (5) seems to give an alternative to just
using the median.

When estimating the standard deviation, formula (16) is
the best estimate for very small sample sizes (less than
16), after which the range formulas (Range/4 and Range/
6) are better. Range/4 formula works best for samples of
moderate size (between 16 and about 70), while for really
large samples, Range/6 is the best estimator.

Detailed results of each simulation with a skewed distri-
bution are given in the Additional file 2, Additional file 3,
Additional file 4, and Additional file 5.

If the reader wants to try these formulas with a different
set of data, we have provided an Excel spreadsheet file
with the formulas at http://www.iun.edu/~mathiho/med
math/Estimating.xls

Effect on the mean difference in meta-analysis
In this section we will discuss the use of these estimating
formulas on the effect size for the meta-analysts. When
pooling the means from various sources for a meta-analy-
sis, the usual procedure is to calculate differences in the
means between the experimental arm of a study and the
control arm, m p = mc - me , and the combined variance for

each study,  (for example, see [3]). The

pooled mean difference is then calculated by using
weighted sum of these differences, where the weight is the
reciprocal of the combined variance for each study.

To determine whether our estimates make a huge differ-
ence when compared to the actual mean difference and
variance, we drew two samples of the same size from a
same distribution. We applied our methods to the Log-

Normal [4, 0.3] distribution since this skewed distribu-
tion is frequently encountered in biology and medicine.

First we ran a test-case meta-analysis. After drawing fifteen
samples of random sizes (between 8 and 100) from our
distribution, we used our estimation formulas to estimate
the mean and the variance from the median and the
range. Then we performed meta-analysis using STATA,
treating the samples as one subgroup and their estimates
as another subgroup to determine the pooled means and
heterogeneity. Our results for the weighted mean differ-
ence, WMD (see Figure 1) are presented in Table 2.

In order to capture a more consistent measure of the effect
of our estimation on pooled mean difference, we repeated
this process by varying the number of trials in the meta-
analysis from 8 to 100. In particular we are interested in
the difference between the real pooled weighted mean dif-
ference in the sample group and the pooled weighted
mean difference from a meta-analysis using estimated
means and variances.

The actual population mean from which we drew samples
is 57.11 and the standard deviation is 17.53 (Log-Normal
[4, 0.3]). The actual average pooled sample mean differ-
ence between two samples (one was control, the other
experimental group) was 0.031. Using the medians and
range, we estimated the means for each sample, and per-
formed the meta-analysis using these estimates. The aver-
age pooled (estimated) mean difference was 0.002,
making the difference between the two methods 0.029
(on average). Individually, the pooled means (both, the
real sample pooled means, and the estimated pooled
means) differed a little more. In Figure 2 the black dia-
monds represent the actual pooled mean difference using
actual sample means. The red circles represent the same
pooled mean differences using our estimation formulas
(we connected the corresponding symbols for clarity). The
horizontal axis represents the number of trials in the
meta-analysis (from 8 to 100).

Table 1: The best formula for estimation by distribution.

Best Formula for 
Sample size (n)

Mean Estimation Standard Deviation Estimation

Formula (5) Median Formula (16) Range/4 Range/6

Log-Normal n ≤ 23 23 <n n ≤ 15 15 <n ≤ 64 64 <n
Beta n ≤ 30 30 <n n ≤ 15 15 <n ≤ 100 100 <n
Exponential n ≤ 21 21 <n n ≤ 15 15 <n ≤ 66 66 <n
Weibull n ≤ 25 25 <n n ≤ 16 16 <n ≤ 110 110 <n 
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As seen from the Figure 2, the estimates of the mean were
fairly accurate and useful. On the other hand, the esti-
mates for the variance were a lot less precise, missing the
actual value of the variance by 10 % – 20% (see the Addi-
tional Files 1, 2, 3, 4, 5). However, in some situations,
using these estimates might still be better than the alterna-
tive – excluding the trials which reported the wrong sum-
mary data (median instead of mean). Using our
estimation method, we can see the effect of such trials on
pooled summary measures. In the next section we will
illustrate our method in an actual systematic review.

An illustrative example of the potential value of 
our methods
American Society of Hematology/ American Society of
Oncology (ASH/ASCO) developed practice guidelines for
the use of erythropoietin (Epo), a drug whose annuals

sales exceed several billions of dollars in the US alone,
based on the systematic review of the effects of Epo on var-
ious clinical outcomes of interest including improvement
of anemia by increase of hemoglobin[4]. The results were
expressed as the mean increase in hemoglobin in Epo arm
compared with the control. However, a number of the
papers reported median increase instead of mean increase
and standard deviation. Due to lack of available methods
to use median values, the authors of this important
review, decided not to use these papers in their meta-anal-
ysis. Recently, the Cochrane review was published
attempting to provide more updated analysis of the effects
of Epo in anemia related to malignancy [5]. The Cochrane
reviewers did meta-analyze data to calculate an average
weighted mean increase in hemoglobin as the result of
Epo treatment. However, the Cochrane investigators
could not include the totality of evidence in relation to

Meta-Analysis of random dataFigure 1
Meta-Analysis of random data. After drawing fifteen samples of random sizes (between 8 and 100) from the Log-Normal 
[4, 0.3] distribution, we used our estimation formulas to estimate the mean and the variance from the median and the range. 
Then we performed meta-analysis using STATA, treating the real samples as one subgroup and their estimates as another sub-
group to determine the results and heterogeneity.
Page 6 of 10
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Table 2: Results of our meta-analysis with the real sample data as one subgroup, and our estimates of the sample as the second 
subgroup.

Actual Sample Our Estimate

WMD [95% CI] % Weight WMD [95% CI] % Weight

Pooled WMD -0.37 [-37.17, 36.44] 42.00 0.41 [-30.92, 31.73] 58.00
Overall pooled WMD 0.08 100.00

Heterogeneity statistic degrees of freedom P I-squared
Sample 0.04 9 1.000 0.0%
Estimate 0.04 9 1.000 0.0%
Overall 0.08 19 1.000 0.0%
Overall Test for heterogeneity between sub-groups

0.00 1 0.975

Significance test(s) of WMD = 0 Sample z = 0.02 p = 0.984
Estimate z = 0.03 p = 0.980
Overall z = 0.01 p = 0.995

1I-squared: the variation in WMD attributable to heterogeneity

Actual pooled mean difference and estimated pooled mean differenceFigure 2
Actual pooled mean difference and estimated pooled mean difference. The black diamonds represent the actual 
pooled mean difference using sample means. The red circles represent the pooled mean differences for the same samples using 
our estimation formulas (we connected the corresponding symbols for clarity). The horizontal axis represents the number of 
trials in the meta-analysis (from 8 to 100).
Page 7 of 10
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this outcome since a number of the trials reported data as
medians instead of means. Therefore, published meta-
analyses related to the effect of Epo in anemia due to
malignancy suffer from the phenomena akin to the out-
come reporting bias [6] simply due to fact that methods
are not yet developed to allow researches to use data
medians.

Here we illustrate that it is actually possible to use medi-
ans and pool, and improve inclusiveness of meta-analy-
ses. For example, the Cochrane investigators were only
able to pool 2 studies [7,8] to evaluate the effect of Epo on
change in hemoglobin in the patients with the baseline
level of hemoglobin >12 g/dl who underwent chemother-
apy. Their results show that on average Epo increases
hemoglobin by 2.05 g/dl. However, the Cochrane investi-
gators could not pool data from other available studies in
the literature with similar eligibility. ASH/ASCO guide-
lines listed two other studies that were eligible for the
meta-analysis (and two that were not).

For the first of these studies [9], by Welch at al, the ASH/
ASCO guidelines paper reported the mean hemoglobin
change for each of the two arms, the experimental and the
control. However, they did not report the data for the
standard deviation of these means. Since the size of each
arm is 15 patients, our formula (16) provides the best esti-
mate of the standard deviation using the median and the
range. We used Figure 1 on page 263 in Welch at al. [9] to
estimate the range of the hemoglobin change for each arm
and used formula (16) to determine the standard devia-
tion. The ASH/ASCO guidelines paper also reported the
difference in medians of hemoglobin response for the
largest study eligible for the meta-analysis conducted by
Thatcher at al [10]. Thatcher et al do report in their paper
ranges of hemoglobin for patients treated by Epo and con-
trol. This trial was a three-arm study, in which two doses
of Epo were compared against the control. For the pur-
pose of this analysis, we separated the data from each of
the Epo arms and compared them against one half of the
control group (just like the rest of the studies in the
Cochrane review). Using the methods described here, we
were able to estimate mean increase (using formula (5))
and standard deviation (using Range/4 formula in both
comparisons). When we incorporated these results into
the Cochrane meta-analysis, we found that the effect of
Epo on mean increase in hemoglobin significantly
changed: the pooled estimate decreased from an average
of 2.05 g/dl in hemoglobin increase to 1.22 g/dl, i.e., a
decrease of approximately 40% (see Figure 3)!

Our estimates come with some uncertainty. To see what
effect this uncertainty has on the outcome of our meta-
analysis, we varied the estimated means in Thatcher at al
by 4% and the estimated standard deviation in both,

Thatcher at al and Welch at al, by 10% to 15% (according
to sample sizes, as indicated in the Additional Files 1, 2, 3,
4, 5). The summary pooled estimate now ranged from the
low of 1.09 to the high of 1.32, which represents a
decrease between 36% and 47%.

This example outlines how our method can be potentially
useful for meta-analysts. It is important to realize that this
example is provided only to illustrate our method. Our
goal here is not to challenge the Cochrane review or ASH/
ASCO guidelines. Nevertheless, we believe that this exam-
ple is a good illustration of the potential of our method.
While it is common practice that the investigators simply
pool what is available to them it is actually not known
how often studies are excluded because of reporting a dif-
ferent summary statistic. In future we will attempt to sys-
tematically address this issue and evaluate, for example,
how often the Cochrane reviews did not pool data from
the available median values when they pooled data on
continuous outcomes. We hope that availability of our
methods to the wider meta-analytic audience may further
improve the inclusiveness of all relevant studies for the
Cochrane and other meta-analyses.

Conclusion

We found that a simple formula (5):  can

be used to estimate the mean using the values of the
median (m), low and high end of the range (a and b ,
respectively).

Using simulation methods we were able to determine that
formula (5) is a best estimator for the mean when dealing
with a small sample size. As soon as sample size exceeds
25, the median itself is the best estimator.

The variance can be estimated using the formula (16)

Together with the well-known estimators (Range/4 for a
normal distribution, and Range/6 for any random
distribution) this formula provides a useful tool for meta-
analysts. Using simulations, we determined that for very
small samples (up to 15) the best estimator for the vari-
ance is the formula (16). When the sample size increases,
Range/4 is the best estimator for the standard deviation
(and variance) until the sample sizes reach about 70. For
large samples (size more than 70) Range/6 is actually the
best estimator for the standard deviation (and variance).

x
a m b≈ + +2

4

S
a m b

b a2
2

21
12

2

4
≈

− +( )
+ −( )
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In summary, the best estimators for the mean and the
standard deviation for different sample sizes are given in
Table 3.

Using these formulas, we hope to enable meta-analysts
use clinical trials even when not all of the information is
available and/or reported.
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An example: Meta Analysis with all eligible trials includedFigure 3
An example: Meta Analysis with all eligible trials included. Cochrane investigators [5] were only able to pool two 
studies to evaluate the effect of Epo on change in hemoglobin in the patients with the baseline level of hemoglobin >12 g/dl 
who underwent chemotherapy. Their results show that on average Epo increases hemoglobin by 2.05 g/dl. Using our estima-
tion formulas, we were able to include two other studies eligible for this meta-analysis ([9, 10]). The pooled estimate 
decreased to 1.22 g/dl, i.e., a decrease of approximately 40%.

Table 3: The best estimating formula for an unknown 
distribution.

Sample Size: n ≤ 15 15 <n ≤ 25 25 <n ≤ 70 70 <n 

Estimate Mean Formula (5) Median
Estimate Standard 

Deviation
Formula (16) Range/4 Range

/6
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Weibull Distribution. The top row of the table displays the results of esti-
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the standard deviation. Each number in this table represents the average 
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